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DESIRABLE INEFFICIENCY

Paul Ohm* and Jonathan Frankle**

Abstract
Computer scientists have recently begun designing systems that 

appear, at least at first glance, to be surprisingly, wastefully inefficient. 
A stock exchange forces all electronic trades to travel through a thirty-
eight mile length of fiber-optic cable coiled up in a box; the Bitcoin 
protocol compels participants to solve difficult yet useless math problems 
with their computers; and the iPhone locks users out for many painful 
seconds after a mistyped password, a delay that increases with each 
subsequent mistake. We draw these examples and others together into a 
common, emerging, and underappreciated approach to digital system 
design, which we name “desirable inefficiency.” Designers have turned 
to desirable inefficiency when the efficient alternative fails to provide or 
protect some essential human value, such as fairness or trust. Desirable 
inefficiency is an example of a design pattern that engineers have 
organically and voluntarily adopted to make space for human values.
Regulators should study these emergent engineering responses and 
actively impose design patterns like desirable inefficiency to protect 
values important to society.
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INTRODUCTION

What values do software developers promote and protect with their 
code? Ten years ago, the answer would have been straightforward: the 
value that typically mattered most was efficiency. From the first moment 
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2018] DESIRABLE INEFFICIENCY 779

of undergraduate instruction in universities around the globe, computer-
scientists-to-be are taught always to optimize for efficiency.1 In simila r 
fashion, twenty-first-century consumers have been conditioned to yearn 
for faster performance, higher bandwidth, and greater storage.2

This has all started to change. Today’s developers have been asked to 
consider coding their systems to protect a broader range of human values 
such as fairness, autonomy, liberty, and legitimacy, to name only a few. 
These calls to consider values beyond efficiency reflect an increasing 
awareness of the fundamental role software plays today in the ordering 
of society and regulation of human behavior.

Nearly two decades ago, Lawrence Lessig observed that “code is 
law.”3 This vital observation has never been as important as it is today, 
as code—software and algorithms—begins to “regulate” spheres of 
human behavior that we once protected primarily through law. Software 
increasingly runs the world, giving rise to new problems from invas ions 
of privacy,4 to discrimination,5 to product safety scares,6 to surveillance.7

Many legal scholars, increasingly worried that the laws designed for the 
                                                                                                                     

1. Cf. THE JOINT TASK FORCE ON COMPUTING CURRICULA ET AL., COMPUTER SCIENCE 
CURRICULA 2013 50 (2013), http://www.acm.org/education/CS2013-final-report.pdf (mentioning 
the importance of a student developing the “mathematical maturity” to analyze algorithmic 
efficiency).

2. See generally JAMES GLEICK, FASTER: THE ACCELERATION OF JUST ABOUT EVERYTHING

(1st ed. 1999) (describing how the use of time-saving devices and time-saving strategies has led
to a human condition focused on speed).

3. LAWRENCE LESSIG, CODE: AND OTHER LAWS OF CYBERSPACE 6 (1st ed. 1999).
4. See generally JULIE E. COHEN, CONFIGURING THE NETWORKED SELF: LAW, CODE, AND 

THE PLAY OF EVERYDAY PRACTICE (2012) (discussing the lack of restrictions on the flow of 
personal information through technology); DANIEL J. SOLOVE, THE DIGITAL PERSON:
TECHNOLOGY AND PRIVACY IN THE INFORMATION AGE (2004) (explaining the unchecked creation 
of digital dossiers by electronic databases, which consist of personal data gathered from 
consumers).

5. See Pauline T. Kim, Data-Driven Discrimination at Work , 58 WM. & M ARY L. REV.
857, 857 (2017) (arguing that “[a]lgorithms built on inaccurate, biased, or unrepresentative data 
can produce outcomes biased along lines of race, sex, or other protected characteristics); Solon 
Barocas & Andrew D. Selbst, Big Data’s Disparate Impact, 104 CALIF. L. REV. 671, 677 (2016)
(discussing the mechanisms that render data mining discriminatory).

6. See FDA, M OBILE M EDICAL APPLICATIONS: GUIDANCE FOR INDUSTRY AND FOOD AND 

DRUG ADMINISTRATION STAFF 8 (2015), https://www.fda.gov/downloads/MedicalDevices/ 
.../UCM263366.pdf (explaining how it intends to apply its oversight authority to mobile medical 
applications); Danielle Keats Citron, Reservoirs of Danger: The Evolution of Public and Private 
Law at the Dawn of the Information Age, 80 S. CAL. L. REV. 241, 245 (2007) (describing the 
tension between “the social goals of economic growth and individual safety”).

7. See generally LAURA K. DONOHUE, THE FUTURE OF FOREIGN INTELLIGENCE: PRIVACY 

AND SURVEILLANCE IN A DIGITAL AGE (2016) (discussing the U.S. government’s collection of 
massive amounts of data from individuals); JENNIFER STISA GRANICK, AMERICAN SPIES: M ODERN 
SURVEILLANCE, WHY YOU SHOULD CARE, AND WHAT TO DO ABOUT IT (2017) (explaining how 
surveillance law has fallen behind while surveillance technology has grown exponentially). 
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pre-digital world are ill-equipped to control the new reach of code, have 
recently taken a hard turn toward the study of regulating software system 
design.8 They argue that we can regulate code better if we replace some 
of our legacy rules with new ones focused on shaping the design of 
software and digital systems.9

Policymakers have joined these calls, casting increasingly suspicious 
eyes at how those who write code wield power over speech and 
decisionmaking.10 It seems likely that the next decade will bring a wave 
of new laws regulating code and coders.

But the shift to consider values other than efficiency comes not only 
from regulators. Software companies and the developers who work for 
them have repeatedly identified the need to create systems that are 
trustworthy, fair, unbiased, and respectful. Some have been motivated by 
fear of consumer backlash or government regulation; others more nobly 
by the desire to do well and to serve society.

We must study closely the means by which developers have regulated 
themselves in the absence of the pressure of a law mandating them to do 
so. How have developers tried to create systems that were fair or 

                                                                                                                     
8. Most notably, there is an emerging academic literature around what is called “privacy 

by design.” WOODROW HARTZOG, PRIVACY’S BLUEPRINT: THE BATTLE TO CONTROL THE DESIGN 
OF NEW TECHNOLOGIES (2018); Michael Birnhack et al., Privacy Mindset, Technological Mindset,
55 JURIMETRICS 55, 55 (2014); Deirdre K. Mulligan & Jennifer King, Bridging the Gap Between 
Privacy and Design, 14 U. PA. J. CONST. L. 989, 989 (2012); Neil M. Richards & Jonathan H. 
King, Big Data Ethics, 49 WAKE FOREST L. REV. 393, 430–31 (2014); Ira S. Rubinstein & 
Nathaniel Good, Privacy by Design: A Counterfactual Analysis of Google and Facebook Privacy 
Incidents, 28 BERKELEY TECH. L.J. 1333, 1333 (2013); Ira S. Rubinstein, Regulating Privacy by 
Design, 26 BERKELEY TECH. L.J. 1409, 1410 (2011). The embrace of this concept has led to 
parallel calls for “by design” regulation to address other persistent problems. Andrew Guthrie 
Ferguson, The Internet of Things and the Fourth Amendment of Effects, 104 CALIF. L. REV. 805,
879 (2016) (discussing “security by design”); Woodrow Hartzog & Frederic Stutzman, Obscurity 
by Design, 88 WASH. L. REV. 385, 385 (2013) (stating that “[d]esign-based solutions to confront 
technological privacy threats are becoming popular with regulators”); Rebecca Wexler, Warrant 
Canaries and Disclosure by Design: The Real Threat to National Security Letter Gag Orders,
124 YALE L.J. F. 158, 160 (2014) (predicting that “companies increasingly will design canary -like 
alerts embedded into technology to notify users when their data suffers a security breach”).

9. HARTZOG, supra note 8.
10. Elizabeth Dwoskin & Hamza Shaban, In Silicon Valley, the Right Sounds a 

Surprising Battle Cry: Regulate Tech Giants, WASH. POST (Aug. 24, 2017), 
https://www.washingtonpost.com/bus iness /economy/in -s ilicon-valley-the-right -sounds-a-
surprising-battle-cry-regulate-tech-giants/2017/08/24/818a6518-8832-11e7-961d-2f373b3977ee 
_story.html; Kenneth P. Vogel & Cecilia Kang, Senators Demand Online Ad Disclosures as Tech 
Lobby Mobilizes, N.Y. TIMES (Oct. 19, 2017), https://www.nytimes.com/2017/10/19/ 
us/politics/facebook-google-russia-meddling-disclosure.html; America’s Tech Giants Have No 
Political Party to Protect Them, ECONOMIST (Oct. 26, 2017), https://www.economist.com/ 
news/united-states/21730652-they-could-eventually-receive-kind-scrutiny-banks-received-
after-financial.
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trustworthy, or code that respected the autonomy or liberty of other 
people? Interestingly, this is not simply a matter of legal scholars learning 
what computer scientists already know; we perceive that the computer 
scientists who have started to spearhead innovative approaches of 
generating values-by-code are neither systematically talking to one 
another, nor synthesizing what they are creating,  nor seeing their work 
as part of an emerging new subdiscipline of research. In this Article, we 
call for a new, interdisciplinary research agenda investigating how values 
can be embedded into code. We inaugurate this agenda by identifying a 
specific new trend that not even the participants have recognized.

The trend we have unearthed is perhaps best symbolized by a 
shoebox-sized metal receptacle sitting in a server room in northern New 
Jersey.11 This box contains Wall Street’s best hope for counteracting the 
undesirable side-effects of high-frequency trading,12 behaviors blamed 
for market instability and flash crashes13: a coil of fiber-optic cable thirty-
eight miles long.14 Signals propagate through this conduit at two-thirds 
the speed of light, meaning that it takes data 350 microseconds—
millionths of seconds—to travel from one end of the cable to the other. 15

All trading communication with IEX, a new stock exchange designed 
around this hallowed length of wire, must first traverse the cable, 
enduring a delay longer than that to any other exchange on Wall Street.16

Before the recent shift in software from coding for efficiency to other 
values, a box like this would have made no sense. The IEX shoebox, 
which imposes an artificial delay on all communication, represents a 
strike against the single-minded law of efficiency.17 IEX argues that its 

                                                                                                                     
11. M ICHAEL LEWIS, FLASH BOYS: A WALL STREET REVOLT 177–78 (1st ed. 2014).
12. Id. at 178.
13. See Andrei A. Kirilenko et al., The Flash Crash: The Impact of High Frequency Trading 

on an Electronic Market, 72 J. FIN. 967, 967 (2017).
14. LEWIS, supra note 11, at 177.
15. Light travels through a vacuum at approximately 300 million meters per second, NIST 

Reference on Constants, Units, and Uncertainty, PHYSICSNIST.GOV, http://physics.nist.gov/cgi-
bin/cuu/Value?c (last visited Aug. 13, 2016), or just over 671 million miles per hour, equivalent  
to 186,000 miles per second. It moves more slowly through fiber-optic cables, in the range of 
about 124,000 miles per second according to a networking company marketing to traders. Brian 
Quigley, Speed of Light in Fiber - The First Building Block of a Low-Latency Trading 
Infrastructure, BLOG.ADVAOPTICAL.COM (Apr. 7, 2011),  http://blog.advaoptical.com/speed-
light-fiber-first-building-block-low-latency-trading-infrastructure. Dividing the thirty-eight miles  
of IEX's fiber-optic cable by this speed, we find that it would take light just over 300 microseconds  
to travel from one end of the cable to the other. Since a wide variety of fiber-optic cables with 
different performance profiles are available on the market, IEX likely uses a brand through which 
light moves at a slightly slower speed than in our calculations.

16. Jeremy Kahn, Brad Katsuyama’s Next Chapter, BLOOMBERG (Aug. 23, 2015, 7:00 PM), 
http://www.bloomberg.com/news/features/2015-08-23/brad-katsuyama-s-next-chapter.

17. Id.
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system protects fairness, a value it deems lacking in other systems.18

High-frequency traders disagree, arguing that IEX is the one acting 
unfairly.19

This is but one instance among many of systems that quietly depend 
on inefficiency to run properly in the name of providing or protecting a 
non-efficiency value. This Article closely analyzes this family of 
examples, which is bound together by a formerly unarticulated design 
principle we call desirable inefficiency. Computer scientists have, in a 
variety of situations, turned to desirable inefficiency in ways that initia lly 
might seem as ludicrous as forcing photons to loop through thirty-eight 
miles of cable in a metal shoebox. From Bitcoin’s “proof of work,”20 to 
proposed solutions to combat spam,21 to the time delays built into the 
iPhone passcode lock,22 inefficiency has been intentionally injected into 
systems, dialing back the raw speed and power our information-age 
conditioning instinctually reveres—all as a means for promoting non-
efficiency values.

The values these systems provide run a wide gamut. IEX’s fiber coil 
creates the conditions for fairness among traders, which engenders trust 
in their market, in ways that will be described in greater detail later. 23

Many of the examples we will examine provide one or both of these two 
vital human values, fairness or trust, or make systems more compatible 
with other values such as legitimacy or respect for individual autonomy. 24

In an age of great anxiety over the rise of black box computer systems 
that dole out government benefits,25 drive cars,26 identify potential 

                                                                                                                     
18. Id.
19. Id.
20. SATOSHI NAKAMOTO, BITCOIN, BITCOIN: A PEER-TO-PEER ELECTRONIC CASH SYSTEM 3,

https://bitcoin.org/bitcoin.pdf (last visited Apr. 22, 2018).
21. Cynthia Dwork & Moni Naor, Pricing via Processing or Combatting Junk Mail, in 

ADVANCES IN CRYPTOLOGY - CRYPTO ’92 139, 139–40 (1992). 
22. Infra note 201and accompanying text.
23. Infra Section II.C.
24. Infra Section II.C (discussing values instantiated through desirable inefficiency).
25. See generally FRANK PASQUALE, THE BLACK BOX SOCIETY: THE SECRET ALGORITHMS 

THAT CONTROL M ONEY AND INFORMATION (2015) (discussing black box computer systems and 
its effect on privacy of persons); Danielle Keats Citron & Frank Pasquale, The Scored Society: 
Due Process for Automated Predictions, 89 WASH. L. REV. 1, 28 (2014) (discussing automated 
systems and their effect on benefit programs).

26. Sven A. Beiker, Legal Aspects of Autonomous Driving, 52 SANTA CLARA L. REV. 1145,
1146 (2012); see also Harry Surden & Mary-Anne Williams, Technological Opacity, 
Predictability, and Self-Driving Cars, 38 CARDOZO L. REV. 121, 121 (2016) (explaining how 
autonomous vehicles function, the problems with autonomous vehicles, and potential legal 
solutions for them).
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criminals,27 and fire missiles,28 we think the study of desirable 
inefficiency as a method for injecting human values into code might point 
the way toward a more balanced coexistence with our machines.

To be clear, we are using the words “efficient” and “inefficient” as a 
computer scientist might rather than as an economist would.29 The 
systems we study in this Article each solve two problems simultaneous ly: 
a basic technical problem—providing a digital market for trading 
stocks—and an enhanced, value-oriented problem that defies 
quantification—providing a digital market for stocks that achieves 
“fairness” by filtering out difficult-to-define high-frequency trading. The 
systems are viewed from the vantage point of the basic problem that the 
solution to the enhanced problem appears inefficient and wasteful 
(perhaps even bizarre). No designer would impose an “artificial” 350-
microsecond delay in a simple digital market without the need to solve 
the enhanced problem as well.

To lay a foundation for the study of desirable inefficiency as a goal 
for regulation, we identify four design patterns in desirably ineffic ient 
systems.30 First, desirably inefficient systems tend to act as filters for 
conduct and activity, making it possible to separate and segregate actions 
into “good” and “bad.” Second, as with IEX’s fiber loop, desirable 
inefficiency is sometimes implemented through hardware rather than 
software.31 We delve deeply into this choice, as it seems to violate the 
disciplinary dogma that software and hardware are interchangeab le,32

                                                                                                                     
27. CLARE GARVIE, ALVARO BEDOYA & JONATHAN FRANKLE, GEO. L. CTR. ON PRIVACY &

TECH., THE PERPETUAL LINE-UP: UNREGULATED POLICE FACE RECOGNITION IN AMERICA 1 (2016),
https://www.perpetuallineup.org/report; Andrew Guthrie Ferguson, Predictive Policing and 
Reasonable Suspicion, 62 EMORY L.J. 259, 261 (2012); Michael L. Rich, Machine Learning, 
Automated Suspicion Algorithms, and the Fourth Amendment, 164 U.PA.L. REV. 871, 871 (2016).  

28. EXEC. OFFICE OF THE PRESIDENT NAT’L SCI. & TECH. COUNCIL COMM. ON
TECH., PREPARING FOR THE FUTURE OF ARTIFICIAL INTELLIGENCE 37–38 (2016), 
https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC
/preparing_for_the_future_of_ai.pdf.

29. We make this choice as computer scientists speaking, at least in part, to other computer 
scientists. Economists will likely understand what we are referring to as “inefficiency” as merely 
the efficient solution to a redefined welfare function.

30. The concept of “design patterns” borrows from the work of Christopher Alexander, a 
scholar of architecture. CHRISTOPHER ALEXANDER ET AL., A PATTERN LANGUAGE: TOWNS,
BUILDINGS, CONSTRUCTION x–xi (1977). This work has already escaped use in architecture and 
has been especially influential in the study of software engineering, where it has been embraced 
as a metaphor for object-oriented software design. See ERICH GAMMA ET AL., DESIGN PATTERNS:
ELEMENTS OF REUSABLE OBJECT-ORIENTED SOFTWARE 1–2 (1994). Other legal scholars have 
adapted Alexander’s method beyond architecture. Erik F. Gerding, Contract as Pattern Language,
88 WASH. L. REV. 1323, 1326–27 (2013).

31. Kahn, supra note 16.
32. Paul Ohm & Blake Reid, Regulating Software When Everything Has Software, 84 GEO.

WASH. L. REV. 1672, 1676 (2016).
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while also offering a counterexample to the idea that software’s 
dynamism and generativity are always better than hardware’s rigidity. 33

Third, desirably inefficient systems tend to be tunable. Fourth, desirably 
inefficient systems often rely upon, and sometimes provide the 
preconditions for, decentralized systems, providing a replacement for 
systems that require centralized intermediaries to operate.

Following the lead of software designers, regulators should consider 
mandating desirable inefficiency in order to address various concerns 
about information systems. As one example, we repurpose IEX’s 
shoebox to address information privacy problems. Information privacy 
sometimes (but not always) depends on the speed with which data can be 
transmitted and processed, so we think mandatory time delays might 
sometimes offer a new source of privacy protections. Perhaps we can 
respond to claims of violation of the “right to be forgotten” by forcing 
Google to hold back some search results for a few minutes.34 Perhaps we 
can offset the possibility that a child predator will use a facial recognit ion 
system to gain the trust of a child on a playground by placing all such 
systems behind a one-hour delay.35 It would be like requiring Google or 
the facial recognition service to place its “server on Mars,” the evocative 
label we give to this new approach to regulation.

We do not claim that mandated desirable inefficiency such as the 
server on Mars will be appropriate in every situation; this is no panacea. 
But under the right conditions, we think desirable inefficiency will be 
better than any alternative approach to regulation, including prohibitions, 
mandates, nudges, or taxes. Unlike most command-and-contro l 
prohibitions or mandates, desirable inefficiency will operate less like a 
binary switch and more like a tunable dial. If the delay proves to be too 
short, the regulator can force Google or the facial recognition service to 
metaphorically move its server to Neptune (an eight-hour delay). If the 
delay is too long, the regulators can allow the server to move to the Moon 
(1.3 seconds). Unlike nudges, mandated desirable inefficiency is much 
more interventionist and direct.36 Rather than tweaking choice 
                                                                                                                     

33. JONATHAN ZITTRAIN, THE FUTURE OF THE INTERNET—AND HOW TO STOP IT 15 (2008).
34. EUROPEAN UNION, GENERAL DATA PROTECTION REGULATION, REGULATION 2016/679

ART. 17 (Apr. 5, 2016), https://publications.europa.eu/en/publication-detail/-publication/ 
3e485e15-11bd-11e6-ba9a-01aa75ed71a1/language-en (providing right to erasure); Case C-
131/12, Google Spain SL v. Costeja, 2014 E.C.R. I-317, http://eur-lex.europa.eu/ 
legalcontent/EN/TXT/?uri=CELEX%3A62012CJ0131 (holding that Google should be required 
to remove or hide plaintiff’s personal data so that it does not appear in Google search results).  
See M EG LETA JONES, CTRL+Z: THE RIGHT TO BE FORGOTTEN 27 (2016) (discussing the Costeja
case).

35. See GARVIE, BEDOYA & FRANKLE, supra note 27, at 25.
36. RICHARD H. THALER & CASS R. SUNSTEIN, NUDGE: IMPROVING DECISIONS ABOUT 

HEALTH, WEALTH, AND HAPPINESS 6 (2008).
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architectures in order to account for human cognitive biases, desirable 
inefficiency is most effective when the harms are great and the regulator 
wants to dictate behavior forcefully. In some cases, mandated desirable 
inefficiency operates a bit like a tax. One proposed solution to spam 
imposes a cost, in the form of computation, on every email transmit ted 
across the network.37 But unlike a tax, desirable inefficiency can be laid 
over a decentralized network, which explains why proof of work sits at 
the heart of the decentralized Bitcoin protocol.38

* * *
Whether as a tool for regulators or as an approach for private actors, 

we think that desirable inefficiency heralds an important advance at the 
juncture where code meets human values.39 It is a useful design strategy 
for building systems that are fairer and more trustworthy than those they 
replace and thus more likely to complement rather than disrupt human 
expectations and institutions. Enabling a human-centric approach to 
control the encroachment of technology into every area of human life
could help this complementary goal.

At a higher level, we believe that our method of analysis in this Article 
offers a path for regulators increasingly concerned about human values 
like bias and fairness in technical systems. We (1) observe a situation in 
which many engineers have, in uncoordinated fashion, voluntar ily 
adopted a design pattern to achieve certain values; (2) formally analyze 
the properties of the design pattern to understand how it enables these 
values; and (3) suggest situations in which regulators should consider 
imposing it. Although desirable inefficiency is our focus in this Article, 
it is just one example of a range of other technical remedies with which
engineers are experimenting as values increasingly influence the design 
of technical systems.

This Article proceeds in four parts. Part I surveys the importance of 
efficiency in computer science and documents the underappreciated 
emergence of systems that resist this trend. Part II defines desirable
inefficiency precisely and investigates how it has served to inject human 
values into software. Part III catalogs four important design patterns of 
these systems. Finally, Part IV applies these principles to regulat ion, 

                                                                                                                     
37. Dwork & Naor, supra note 21, at 139–40.
38. NAKAMOTO, supra note 20, at 3.
39. We connect this work to the growing literature on values-in-design. See generally

DEBORAH G. JOHNSON & HELEN NISSENBAUM, COMPUTERS, ETHICS, AND SOCIAL VALUES 4–6
(1995) (discussing ethical and social values related to a growing computer environment as well as 
professional responsibility concerns for programmers); Batya Friedman et al., Value Sensitive 
Design and Information Systems, in HANDBOOK OF INFORMATION AND COMPUTER ETHICS 69 (K.E. 
Himma & H.T. Tavani eds., 2008) (explaining value sensitive design through case studies).

9

Ohm and Frankle: Desirable Inefficiency

Published by UF Law Scholarship Repository,



786 FLORIDA LAW  REVIEW [Vol. 70

surveying what a design-focused, desirably inefficient approach can do 
that ordinary approaches to the regulation of technology cannot. 

I. EFFICIENCY AND OTHER VALUES IN COMPUTING

Efficiency is among the most important values in computer science. 40

Its centrality is so deep-seeded that it is rarely verbalized in the 
computational community, tantamount to the emphasis medical 
professionals place on preserving human life. There are sound economic 
reasons for pursuing this value: efficient code can do more work in less 
time using fewer resources, a benefit that directly translates into financ ia l 
rewards.41

In recent years, however, a series of independent technical efforts 
have simultaneously arrived at a shared design principle that seemingly 
violates this disciplinary doctrine in the name of protecting values other 
than efficiency. Inefficiency, a property that generations of researchers 
have toiled to stamp out, is sometimes necessary or useful, providing for 
values such as fairness, autonomy, or legitimacy. For this reason, we 
connect this work to those engaged in studying “values in design,” 
“privacy by design,” and “security by design.”42

We christen the shared mode of thought that unites our examples 
desirable inefficiency, a conceptual framework that remains loosely 
articulated within the computational community and virtually unknown 
beyond it. For computer scientists and policymakers alike, there is a 
tremendous deal to learn from closely inspecting this emerging paradigm. 
To fully appreciate the implications of this trend, however, we must
understand the importance of efficiency in computer science. 

A. Efficiency: Computing’s Cardinal Virtue
Computational efficiency can be weighed on a number of axes—the 

running time of a program, the amount of electricity it consumes, the 
storage space it occupies, the accuracy the underlying algorithm,43 or 

                                                                                                                     
40. See Harry R. Lewis & Christos H. Papadimitriou, The Efficiency of Algorithms, 238 

SCI. AM. 96, 96 (Jan. 1978) (discussing the importance of algorithmic efficiency).
41. THOMAS H. CORMEN ET AL., INTRODUCTION TO ALGORITHMS 12–13 (3d ed. 2009) 

(discussing the importance of algorithms).
42. See supra note 8 and accompanying text.
43. The accuracy of a machine learning algorithm can be interpreted as the efficiency with 

which it is able to classify examples. Alternatively, the only value more precious than efficiency  
is perhaps correctness—whether a program came to the right answer. Traditional computer 
programs are typically assumed to be correct for the purposes of efficiency analysis. In contrast, 
machine learning algorithms, which aim to make predictions about unseen data, rarely come close 
to perfect correctness. In this sense, the accuracy of a machine learning algorithm is a 
consideration even more fundamental than efficiency.
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even the amount of time necessary to develop it.44 Each of these 
quantities is scarce, expensive, and, therefore, extraordinarily precious. 
Resource limitations were particularly severe on primitive computers in 
the early days of computer science, the formative era that shaped the 
discipline’s psyche.45 Today, courses studying canonically efficient 
algorithms and techniques for designing new ones lie at the heart of 
computer science curricula.46

Economically, this emphasis is unsurprising. Even in an age of 
ubiquitous computing devices performing billions of calculations per 
second, superfluous work can be costly. In 2010, for example, Google’s 
datacenters—huge warehouses of servers that drive its search, video, 
email, and other offerings—consumed as much electricity as 200,000 
homes.47 A marginally more parsimonious algorithm that improved 
power-efficiency by a fraction of a percent would save the company 
millions of dollars each year.48 Conveniently, this enhancement would 
also advance purposes beyond Google’s bottom line, diminishing the 
environmental externalities of the vast computing infrastructure 
necessary to power the modern web.49 It is little wonder, then, that when 
hiring, tech companies eschew traditional interviews for rigorous, mult i-
hour onslaughts of algorithmic puzzles in need of efficient solutions.50

In many contexts, efficiency represents far more than a mere luxury 
for conserving resources and reducing expenditures. Rather, it is often the 
difference that makes solving difficult computational problems 
achievable. Many tasks continue to remain hopelessly beyond the reach 
of even the world’s most powerful supercomputers, but each passing year 

                                                                                                                     
44. CORMEN ET AL., supra note 41.
45. See C.G. Bell et al., The Evolution of the DECsystem10, 21 COMMS.ACM 44, 44–45

(1978) (discussing the then state-of-the-art PDP-10 computer and the evolution of its predecessor 
models, which were priced in the tens or hundreds of thousands of dollars and had on the order of 
kilobytes of memory).

46. See THE JOINT TASK FORCE ON COMPUTING CURRICULA ET AL., supra note 1, at 37.
47. James Glanz, Google Details, and Defends, Its Use of Electricity, N.Y. TIMES (Sept. 8, 

2011), http://www.nytimes.com/2011/09/09/technology/google-details-and-defends-its-use-of-
electricity.html.

48. Jack Clark, Google Cuts Its Giant Electricity Bill with DeepMind-Powered AI,
BLOOMBERG TECH. (July 19, 2016, 3:54 PM), https://www.bloomberg.com/news/articles/2016-
07-19/google-cuts-its-giant-electricity-bill-with-deepmind-powered-ai (“Saving a few percentage 
points of electricity usage means major financial gains for Google.”).

49. See Google Green, GOOGLE, https://www.google.com/green/efficiency/datacent ers / 
(last visited Aug. 14, 2016) (discussing energy efficiency measures in Google’s datacenters).

50. A cottage industry has arisen of books purporting to help prospective employees with 
this style of interview. E.g. GAYLE LAAKMANN M CDOWELL, CRACKING THE CODING INTERVIEW 2
(6th ed. 2015).
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sees another formidable problem tamed into tractability by a computer 
scientist who has developed a cleverly efficient algorithm.51

This preoccupation with efficiency extends to the sphere of hardware, 
where engineers strive to build ever-faster circuitry. Gordon Moore, the 
founder of Intel, famously predicted in 1965 that the number of transistors 
that could fit on a processor—and thereby increase the raw performance 
of the chip—would double every one to two years as technology 
improved and components shrank.52 Until recent years (when transistor 
sizes began to near the atomic level53) this trend continued unabated in 
what became known as Moore’s Law, doubling computer speeds at least 
biennially.54 Moore conceded in 2003 that transistor technology was 
nearing the boundaries of feasible miniaturization,55 inspiring a 
corresponding renaissance in software efficiency among programmers 
who must contend with this new hardware constraint.

As the dividends of these electronics advancements have dramatically 
amplified computational capacity while decreasing accompanying prices, 
engineers have begun to focus on the efficiency of a different resource :
themselves. In an employment market where demand far outstrips supply, 
software developers are at a premium.56 Any measure that improves a 
programmer’s productivity is thus of enormous fiscal consequence to her 
employer. In deference to the precious time of their colleagues, 
professional programmers are intimately concerned with style—
formatting and structural conventions that keep code consistent, 
predictable, and comprehensible across an engineering organization.57 In 
large technical outfits, these rules are codified in tomes of legalistic edicts 
governing proper indentation, line length, and capitalization. Google’s 
style guide for the Java language, for example, comprises 5,000 words 
                                                                                                                     

51. See, e.g., Adrian Cho, Mathematician Claims Breakthrough in Complexity Theory, SCI.
(Nov. 10, 2015, 5:45 PM), http://www.sciencemag.org/news/2015/11/mathematician-claims -
breakthrough-complexity-theory.

52. Gordon E. Moore, Cramming More Components onto Integrated Circuits, 38 ELEC.
114, 115 (1965).

53. Max Schulz, The End of the Road for Silicon?, 399 NATURE 729, 730 (1999) (predicting 
the eventual limitations of silicon-based transistors); Tom Simonite, Intel Puts the Brakes on 
Moore’s Law, MIT TECH. REV. (Mar. 23, 2016), https://www.technologyreview.com/s/601102/ 
intel-puts-the-brakes-on-moores-law/ (confirming Schulz’s prediction).

54. Gordon E. Moore, No Exponential Is Forever: But “Forever” Can Be Delayed!, IEEE
INT’L SOLID-STATE CIRCUITS CONFERENCE (Feb. 10, 2003), https://ieeexplore.ieee.org/stamp / 
stamp.jsp?arnumber=1234194.

55. Id.
56. BUREAU OF LAB. STATS., Occupational Outlook Handbook: Software Developers,

http://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm (last 
updated Dec. 17, 2015).

57. See generally BRIAN W. KERNIGHAN & P. J. PLAUGER, THE ELEMENTS OF PROGRAMMING 

STYLE (2d ed. 1978) (discussing different elements of style to improve programming).
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dictating the expected formatting of every character that a programmer 
might type.58 These onerous requirements serve a valuable purpose for 
efficiency—an extra hour spent writing compliant code pays for itself 
many times over when inevitable readers can quickly surmise its design 
and behavior.59

It is not enough to call efficiency an important value in computer 
science. It is a tacit presumption, not only taken for granted but implic it ly 
regarded as nearly inviolable.

B. The Value of Inefficiency: Cryptography
In a few corners of computer science, the central preoccupation with 

efficiency is turned on its head. A major contribution of this Article is to 
begin to draw this disconnected group of research and ideas into a 
coherent category of methods. In these circles, problems that lack 
efficient algorithms and cannot be “broken” by clever insights are 
considered extraordinarily valuable.60 We highlight this contrarian 
community and delineate the unspoken design values that underpin its 
unorthodox priorities. These principles remain exotic even to mainstream 
computer scientists, let alone legal scholars, but we believe that both 
disciplines can draw important insights from the unheralded moments 
when the central dogma of computer science fails.

The most mainstream and prominent members of this unconventiona l 
subfield are cryptographers, whose duty is to make extracting encrypted 
information as challenging as possible.61 Ideally, doing so should be so 
difficult that an adversary (as security researchers call their imaginary 
foes) constrained by the laws of time, physics, and reasonable efficiency 
should find the task impossible.62 Information thus locked away will 
remain permanently secure from anyone lacking the proper credentials. 
Cryptographers represent our first example of a unique breed of computer 
scientists who engineer with inefficiency. Their practice is extreme, 
however, designing inefficiency with the same zeal that their peers might 
display when designing a faster algorithm. Efficient algorithmic 
                                                                                                                     

58. See Google, Google Java Style Guide, GITHUB, https://google.github.io/styleguide/ 
javaguide.html#s7-javadoc (last visited Aug. 18, 2016).

59. Toward the same end, professional programmers often strategically decide not to 
improve the efficiency of certain code, calculating that this inaction is more cost -efficient than 
investing expensive engineering-time to marginally improve performance.

60. See James Nechvatal et al., Report on the Development of the Advanced Encryption 
Standard (AES), 106 J. OF RES. OF THE NAT’L INST. OF STANDARDS AND TECH., 511, 524 (2001)
(discussing the desire to utilize an encryption algorithm that is secure against analytic shortcut 
attacks).

61. BRUCE SCHNEIER, APPLIED CRYPTOGRAPHY 21 (2d ed. 1996).
62. C.E. Shannon, Communication Theory of Secrecy Systems, 27 BELL SYS. TECHNICAL J.

656, 659 (1948) (describing the concept of “perfect secrecy” in cryptography).
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techniques that weaken these defenses are cause for immense concern, 
having revealed unforeseen flaws in ostensibly impenetrab le 
mathematical armor.63

Although cryptography depends on the inefficiency of adversaries, it 
should simultaneously minimize the computational burden imposed on 
the computers of users who possess the proper credentials. In this respect, 
encryption schemes should continue to meet traditional criteria for 
efficiency.64 Ciphers robust enough to tolerate billions of secure web 
connections each day must deftly navigate this careful tension between 
remaining impregnable to adversaries and nearly invisible to users. In this 
light, cryptographers treat efficiency and inefficiency, not as values to 
blindly pursue in every circumstance, but as tools to thoughtfully deploy 
according to need and circumstance.

C. Introducing Desirable Inefficiency
Between the extreme inefficiency cryptography imposes on its 

adversaries and the mainstream pursuit of algorithmic performance is a 
delicate middle ground where inefficiency is judiciously calculated and 
balanced. Many of these systems encompass what we define as desirable 
inefficiency. The essence of desirable inefficiency, which we will define 
in Part II, is a connection between apparently inefficient code and human 
values. Engineers turn to desirable inefficiency when they conclude that 
conventionally efficient solutions are unlikely to advance human values 
that cannot be coded into the technical substance of the system.

Desirably inefficient systems are the digital scions to non-digita l 
precursors such as speed bumps and stop signs, which force drivers to 
limit their pace, not to a complete standstill, but to a rate amenable to the 
safety of pedestrians and others with whom they share the road. These 
traffic-calming devices impose a moderate degree of desirable 

                                                                                                                     
63. When these “attacks” weaponize efficiency against protocols actively deployed on 

hundreds of millions of computers, concern rapidly gives way to outright panic. An encryption 
scheme so fatally damaged by efficiency must swiftly be discarded and replaced, a task of 
unthinkable logistical proportions in our modern digital world.

To minimize the risks of such a disaster, cryptographic suites endure immense public scrutiny 
before they can attain certification for general use. Modern protocols are chosen through contests 
in which groups from academia and industry submit candidate schemes for wider consideration. 
Teams of rival cryptographers then work to develop efficient algorithms that undermine the 
proposals, uncovering fatal deficiencies that might otherwise have remained catastrophically 
dormant. Only after surviving this brutal battery of attempted attacks can a protocol be considered 
secure, believed with a high degree of confidence to be immune to efficiency. See Nechvatal et 
al., supra note 60, at 519–21. Once beyond this security threshold, researchers can weigh a 
protocol along more conventional axes.

64. See generally SCHNEIER, supra note 61 (analyzing the efficiency of encryption 
schemes).
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inefficiency on commuting times, balancing a still-acceptable rate of 
travel with safety.

A number of digital speed bumps and stop signs are deeply embedded 
in our everyday interactions with technology—even an interface as 
simple as the numerical or pattern passcodes used to secure mobile 
phones is an example of desirable inefficiency. On modern devices, a
failed unlocking attempt is followed by a mandatory waiting period of a 
fraction of a second. After several mistaken entries, a phone will refuse 
submissions for a period of many seconds or minutes.65 An efficiency-
maximizing approach would allow a user struggling to remember a 
passcode to try every candidate code that comes to mind as quickly as 
possible. Instead, phone designers use time delays to rate-limit this
process in order to thwart rapid guessing by a thief trying to break into 
the device.66 This inefficiency, measured in time, balances the 
inconvenience imposed on a forgetful user or poor typist with the 
device’s security—only after several failed attempts are the delays so 
burdensome as to become perceptible, let alone frustrating. This penalty 
structure is designed to distinguish erroneous keystrokes, which are likely 
to be corrected after one or two attempts, from brute-force attempts to 
compel entry.67

A second example is the IEX stock exchange. High-frequency traders 
make their living by exploiting the physical geography of the many 
exchanges that mediate stock transactions.68 The time light takes to 
journey the miles between ordinary exchanges, registering in single digits 
of microseconds, is significant enough to create momentary pricing 
discrepancies that high-frequency traders convert into profits.69 Armed 
                                                                                                                     

65. APPLE, IOS SECURITY: IOS 11, 12–15 (2018), https://www.apple.com/business/docs/ 
iOS_Security_Guide.pdf.

66. Kim Zetter, Apple’s FBI Battle is Complicated. Here’s What’s Really Going On, WIRED

(Feb. 18, 2016, 1:15 PM), https://www.wired.com/2016/02/apples-fbi-battle-is-complicated-
heres-whats-really-going-on/. 

67. Id. This feature was at the heart of the recent Apple/FBI debate over unlocking the San 
Bernardino shooter’s iPhone. The FBI demanded from Apple the ability to guess passwords in an 
arbitrary rate. In re the search of an Apple iPhone, No. ED 15-0451M (E.D. Cal. 2016) (order 
compelling Apple, Inc. to assist agents in search), available at https://assets.documentcloud.org/ 
documents/2714005/SB-Shooter-Order-Compelling-Apple-Asst-iPhone.pdf.

68. LEWIS, supra note 11, at 177–78.
69. This phenomenon is not unique to stock exchanges. Any network of computing devices 

suffers from miniscule communication delays that create information lags between members of 
the system. The time delays among stock exchanges are relatively small since they are all located 
in the New York metropolitan area. The Internet, as a global network, faces far larger delays,
while the individual components inside a computer experience the same phenomenon on a far 
smaller scale. These so-called propagation delays are responsible for a pernicious computational 
problem called clock synchronization, where networked computers struggle to keep the same time 
of day as one another with high precision. Messages traveling between computers with out -of-
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with the fastest connections that money can buy, they pounce before the 
exchanges—let alone other traders—have time to react.70 This so-called 
“race to zero” has become an arms race among traders, who battle for the 
ever smaller communication delays that make this style of trading 
profitable.71 After repeatedly moving their servers closer to the exchanges 
and even co-locating them in the same rooms,72 some companies are 
going so far as to experiment with laser arrays mounted across the 
northern New Jersey skyline.73

The thousands of dollars spent shortening these distances and 
investing in faster hardware shaved mere millionths of seconds off of this 
propagation time, but the advantage in doing so was dramatic. High-
frequency traders were effectively assessing a small tax on large stock 
transactions by capitalizing on asynchrony in asset prices between 
exchanges before the markets themselves had time to come to 
consensus.74

Consider, as an illustration, a high-frequency trading technique known 
as front-running.75 Brokers typically fulfill large stock orders by splitting 
them into smaller trades across many exchanges which, collectively, have 
the buying or selling capacity necessary to complete the transaction.76 A
high-frequency trader could front-run some of the components of the 
larger trade by listening for a single fragment on one exchange and 
exploiting its faster connections to beat the remaining pieces to others. 77

In the process, the high-frequency trader will enjoy the price increase that 

                                                                                                                     
sync clocks can sometimes seem to go backwards in time, arriving before they were sent and 
wreaking havoc on systems that were not designed with this seemingly impossible contingency 
in mind.

70. Matt Levine, The ‘Flash Boys’ Exchange is Still Controversial, BLOOMBERG VIEW
(Dec. 22, 2015, 4:14 PM), https://www.bloomberg.com/view/articles/2015-12-22/the-flash-boys-
exchange-is-still-controversial.

71. Eric Budish et al., The High-Frequency Trading Arms Race: Frequent Batch Auctions  
as a Market Design Response, 130 Q. J. OF ECON. 1547, 1548–49 (2015); Christopher Steiner, 
Wall Street’s Speed War, FORBES (Sept. 9, 2010, 10:00 AM), http://www.forbes.com/forbes/ 
2010/0927/outfront-netscape-jim-barksdale-daniel-spivey-wall-street-speed-war.html. 

72. Geoffrey Rogow, Colocation: The Root of All High-Frequency Trading Evil?, WALL

ST. J. (Sept. 20, 2012, 1:57 PM), http://blogs.wsj.com/marketbeat/2012/09/20/collocation-the-
root-of-all-high-frequency-trading-evil/.

73. Scott Patterson, High-Speed Stock Traders Turn to Laser Beams, WALL ST. J. (Feb. 11, 
2014, 11:00 PM), http://www.wsj.com/articles/SB100014240527023039479045793407114246 
15716.

74. Concept Release on Equity Market Structure, 75 Fed. Reg. 3594, 3608 (proposed Jan. 
21, 2010) (to be codified at 17 C.F.R. pt. 242).

75. LEWIS, supra note 11, at 176.
76. Id.
77. Concept Release on Equity Market Structure, 75 Fed. Reg. at 3609.
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follows the arrival of the rest of the order.78 Another strategy, known as 
stale quote arbitrage, is to observe a buyer seeking a stock at a higher 
price than that for which a seller elsewhere is offering it.79 A high-
frequency trader can buy the stock from the seller at the lower price and 
sell it to the buyer at the higher price before the exchanges themselves 
have time to synchronize, keeping the difference as profit.80

The thirty-eight-mile fiber loop eliminates these sorts of strategies by 
delaying all communication with IEX by 350 microseconds.81 This delay 
ensures that no front runner can find out about a transaction until after it 
has time to propagate to every other exchange.82 This fiber loop creates 
inefficiency—transactions arrive at IEX far more slowly than they would 
in its absence, ending the race to zero.83 But this inefficiency is desirable:
it eliminates an unwanted behavior by subverting high-frequency 
trades.84 The inefficiency, then, trades off speed for a human value that 
cannot be expressed in the economic vocabulary of the underlying
system: fairness.85

D. Proof of Work
Several key examples of desirable inefficiency fall within a category 

of algorithms known as proof of work. Proof of work problems are 
computational puzzles that require a tangible, regimented amount of 
energy to be expended in order to arrive at a solution.86

Proof of work has long been a curious tool in need of an application. 87

It was first suggested by Cynthia Dwork and Moni Naor in the early 
1990s as a solution to the pernicious problem of spam.88 In Dwork and 
Naor’s proposal, a computer sending an email would have to complete a 
proof of work puzzle in order to convince the recipient server to accept 
the message.89 This task would consume a small but appreciable amount 

                                                                                                                     
78. Levine, supra note 70.
79. Kahn, supra note 16.
80. Id.; Concept Release on Equity Market Structure, 75 Fed. Reg. at 3608.
81. Levine, supra note 70.
82. Id.
83. Id.
84. Id.
85. Id.
86. Markus Jakobsson & Ari Juels, Proofs of Work and Bread Pudding Protocols, in 23

SECURE INFORMATION NETWORKS 258, 258 (Bart Preneel ed., 1999) (coining the term “proof of 
work”).

87. Dwork & Naor, supra note 21, at 1.
88. Id. But see Ben Laurie & Richard Clayton, “Proof of Work” Proves Not to Work, THIRD 

ANN. WORKSHOP ON ECON. OF INFO. SECURITY 8 (2004) (discussing the problems with employing 
proof of work to fight spam).

89. Dwork & Naor, supra note 21, at 4. 
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of computation time, akin to paying the cost of postage before sending a 
letter.90 To the average user transmitting a few dozen emails a day, this 
minor expense would hardly be noticeable.91 To a spammer unleashing 
thousands of messages each minute, however, this cumulative work 
would be so burdensome as to undermine the entire business model.92

The key insight underlying this proposal is that proof of work serves as a 
digital speed bump, permitting email to proceed only on a human 
timescale.93

Ronald Rivest, Adi Shamir, and David Wagner applied simila r 
methods to the problem of digitally sealing data for a set period of time ,
devising a technique called “time-release cryptography.”94 Public figures, 
for example, might request that their diaries remain encrypted for 50 
years before being made available for historical study.95 Some have 
characterized this need as the digital equivalent of burying a time 
capsule.96 Since computation has no inherent connection to “wall-clock 
time” (as computer scientists describe our physical temporal 
perceptions),97 securing information in this manner with the 
mathematical rigor cryptographers demand is deceptively vexing. 

The typical cryptographic toolkit, which seeks to maximize 
inefficiency and render decryption permanently impossible, is far too 
imprecise for this task. Instead, with time-release cryptography, a 
message is encrypted weakly enough that sustained computationa l 
exertion will yield its contents.98 The proposal takes into account Moore’s 
Law and other trend lines of technological progress to render encrypted 
messages susceptible to brute force cracking, but only with technology 
predicted to be available a few decades from now.99 The level of 
                                                                                                                     

90. Id.
91. Id.
92. Id.
93. Id.
94. Ronald L. Rivest et al., Time-Lock Puzzles and Timed-Release Crypto, MIT TECHNICAL 

RPT. 1–2 (1996), http://dl.acm.org/citation.cfm?id=888615. 
95. Id. at 1. Such a request might be governed by statute. For example, the Presidential 

Records Act of 1978, 44 U.S.C. § 2204(b) (2012), exempts the records of Presidents from 
disclosure through Freedom of Information Act (FOIA), 5 U.S.C. § 552 (2012), for five years, 
after which the presumption flips to public access. 44 U.S.C. § 2204(b); see also id. § 2204(a) 
(providing a longer, twelve-year period of Freedom of Information Act exemptions for 
Presidential records in certain categories).

96. Ronald L. Rivest, Description of the LCS35 Time Capsule Crypto-Puzzle, MIT
COMPUTER SCI. & ARTIFICIAL INTELLIGENCE LAB (Apr. 4, 1999), https://people.csail.mit.edu/ 
rivest/pubs/Riv99b.lcs35-puzzle-description.txt.

97. Eric Raymond, Wall Time, JARGON FILE (Version 4.4.7), http://www.catb.org/ 
jargon/html/W/wall-time.html.

98. Rivest et al., supra note 94, at 2.
99. Id.
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encryption (and thereby inefficiency) can be finely regulated to adjust the 
time necessary to extract the message.100 Just as with Dwork and Naor’s 
solution to spam, Rivest, Shamir, and Wagner harnessed inefficiency in 
order to attach the abstract difficulty of breaking cryptography back to a 
human notion of time.101

It is the meteoric rise of cryptocurrencies, however, that has elevated 
the stature of proof of work as a design method.102 Most prominent 
among hundreds of new cryptocurrencies is Bitcoin, whose economy is 
currently valued at more than $127 billion.103 Each Bitcoin user maintains 
one or more accounts on the larger Bitcoin network, a collection of 
thousands of Internet-connected computers (called nodes) that 
collaboratively facilitate and validate transactions.104 To send bitcoins105

from one account to another, a user announces the transaction to every 
node on the Bitcoin network.106 These nodes, in turn, each mainta in 
individual ledgers of all the Bitcoin transactions they have ever 
witnessed.107 If an account lacks sufficient funds or a transaction 
otherwise appears invalid, nodes simply ignore it. 108

Unfortunately, these nodes sometimes disagree with each other when 
announcements are lost or arrive out of order, a reasonably frequent 
occurrence built into the underlying architecture of the Internet. 109

Messages take time to propagate across the Internet, so nodes can grow 
to have vastly different views of the Bitcoin world even when all 
participants are acting in good faith. 110 Worse, some users might attempt 
to exploit these inconsistencies to spend money twice, subverting 
Bitcoin’s fundamental ability to function as a currency.111 Without a way 
to keep nodes in synchrony, Bitcoin would devolve into a confused tangle 
of contradictory transactions and uncertain account balances.

                                                                                                                     
100. Id.
101. Id.
102. ARVIND NARAYANAN ET AL., BITCOIN AND CRYPTOCURRENCY: A COMPREHENSIVE 

INTRODUCTION 1 (2016).
103. Cryptocurrency Market Capitalizations, CASHBET COIN, https://coinmarketcap.com

(last visited July 20, 2018).
104. NAKAMOTO, supra note 20, 3–4.
105. According to the official Bitcoin website, the name should be capitalized “when 

describing the concept of Bitcoin, or the entire network itself.” It should be left uncapitalized 
when “used to describe bitcoins as a unit of account”—that is, when referring to the currency 
itself. Vocabulary, BITCOIN, https://bitcoin.org/en/vocabulary#bitcoin (last visited Mar. 9, 2018). 

106. NAKAMOTO, supra note 20, 3–4.
107. Id.
108. Id.
109. Id.
110. Id.
111. NARAYANAN ET AL., supra note 102, at 34–35.
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At the core of Bitcoin’s strategy to remedy this inconsistency is proof 
of work, making Bitcoin the intellectual descendant of Dwork and Naor’s 
research on spam.112 Bitcoin divides its massive ledger into a list of 
blocks, each of which contains approximately ten continuous minutes’ 
worth of transactions that the entire network has already agreed upon.113

In aggregate, this structure is known as the blockchain.114 To update the 
blockchain, a node collects the transactions it has witnessed since the last 
block was created, assembling them into a candidate block that it hopes 
the entire network will eventually come to accept.115 Before it is allowed 
to propose its block to the network, however, the node must complete a 
proof of work problem based on the block’s contents.116 The difficulty of 
this problem is calibrated so that, after ten minutes on average, one node 
on the entire Bitcoin network should have arrived at a solution for its 
candidate block.117 The node that does so sends its block and solution to 
the entire network, and any node able to validate these items adopts it 
onto its view of the blockchain, restarting the process.118

Proof of work plays a key role in setting the rigid tempo of block 
creation that delays updates to the blockchain long enough for consensus 
to form.119 Ten minutes provides sufficient time for word of a newly-
generated block to reach the entire network, ensuring that all nodes share 
the same view of the transaction ledger before more new blocks appear.120

                                                                                                                     
112. NAKAMOTO, supra note 20, at 3.
113. NARAYANAN ET AL., supra note 102, at 41–42.
114. Id.
115. NAKAMOTO, supra note 20, at 3.
116. Id.; NARAYANAN ET AL., supra note 102, at 41–42.
117. NARAYANAN ET AL., supra note 102, at 41–42.
118. NAKAMOTO, supra note 20, at 3.
119. NARAYANAN ET AL., supra note 102, at 41–42.
120. Simon Barber et al., Bitter to Better—How to Make Bitcoin a Better Currency, in

FINANCIAL CRYPTOGRAPHY AND DATA SECURITY 399, 411 (2012) (“Another approach is to 
fundamentally reduce the transaction confirmation delay by re-parameterizing the computational 
puzzles to reduce the average block creation interval from 10 minutes to 10 seconds. However, 
this would increase the forking propensity on slow communication networks, which could become 
a concern.”); see NARAYANAN ET AL., supra note 102, at 43 (“Why do we want to maintain this 
10-minute invariant? The reason is quite simple. If blocks were to come very close together, then 
there would be a lot of inefficiency, and we would lose the optimization benefits of being able to 
put a lot of transactions in a single block.”); see also Aviv Zohar, Bitcoin: Under the Hood, 58 
COMMUNICATIONS OF THE ACM 104, 107 (2015) (“The difficulty of the computational problem is 
automatically adjusted so blocks are created only once every 10 minutes in expectation throughout 
the entire network. This period of time is sufficiently long to make conflicts extremely rare.”).

Were the time set much lower, competing blocks could simultaneously surface, threatening 
to inflict further chaotic discord. Were it set much higher, transactions would take so long to settle 
on the blockchain that the humans involved—merchants and shoppers waiting for payments 
process—would grow impatient and frustrated, possibly abandoning the currency entirely. 
NARAYANAN ET AL., supra note 102, at 37–38.
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As with Dwork and Naor’s solution to spam and Rivest et al.’s approach 
to time-release encryption, Bitcoin’s proof of work process uses
inefficiency to advance qualitative ends beyond pure performance 
optimization. All three designs tie computational mechanisms back to 
human notions of time and speed that that would otherwise dissolve in a 
technical system left to its own devices.

Proof of work serves an additional purpose as “proof of existence” for 
nodes on the Bitcoin network.121 The block mining process is like a 
voting procedure, where each node gets a “vote” with which to weigh in 
on its view of the Bitcoin world.122 Bitcoin uses proof of work to ensure 
that each node that “votes” represents a real computer with tangib le 
processing capabilities.123 In other words, proof of work is the metric by 
which metaphorical voting rights are distributed across the Bitcoin 
network, a concept crystallized by Bitcoin’s mysterious creator Satoshi 
Nakamoto in the phrase, “one CPU, one vote.”124

The measured application of desirable inefficiency is an overlooked 
design technique with implications that extend well beyond the obscure
margins of computer science. Computer scientists and legal scholars alike 
should draw numerous lessons from this collective engineering response. 
By altering their designs to trade away sought-after efficiency for the sake 
of advancing other values, computer scientists have blazed a trail that we 
will later encourage regulators to travel. 

E. Computing and Human Values
Desirable inefficiency is ultimately a case study of how to inject 

important human values into services and products. Values like fairness 
and trust do not exist in the vocabulary of programming languages, nor 
does any distinction between “good” and “bad” uses of a technology. 

                                                                                                                     
121. NAKAMOTO, supra note 20, at 3.
122. Id. In practice, nodes exercise this voting power by mining for blocks and deciding 

whether newly-created blocks mined by others are, in fact, valid. If this voting analogy were the 
way Bitcoin truly operated, participants could rig the vote by artificially creating armies of fake 
nodes for the sole purpose of stuffing the ballot box. Id. at 3–4.

123. NAKAMOTO, supra note 20, at 3–4.
124. NAKAMOTO, supra note 20, at 3. Bitcoin was created under the pseudonym Satoshi 

Nakamoto, a figure whose identity has remained a mystery since Bitcoin’s inception in 2009. An 
Australian computer scientist named Craig Wright recently announced that he was Satoshi 
Nakamoto. Craig Wright Reveals Himself as Satoshi Nakamoto, ECONOMIST (May 2, 2016), 
http://www.economist.com/news/business-and-finance/21698060-craig-wright-reveals-himself-
as-satoshi-nakamoto. However, Wright declined to provide proof of his identity in the form of
moving bitcoins that definitively belong to Nakamoto, casting doubts on his claim. Wright’s 
Wrongs, ECONOMIST (May 7, 2016), http://www.economist.com/news/finance-and-
economics/21698294-quest-find-satoshi-nakamoto-continues-wrightu2019s-wrongs.
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Programmers have conjured desirable inefficiency as the means to 
encourage ends like fairness and trust.

1.  Motivations
This Article builds on earlier work about Values-in-Design, an 

interdisciplinary approach that investigates socio-technological systems 
to discover the way system designers and other stakeholders advance 
human values through technical design.125 In particular, we are interested 
in revealing the hidden connections between human values and 
inefficient design. Given the zeal with which some computer scientis ts
adhere to the goal of efficiency, we find it important and revealing to 
study the work of those who have instead turned to inefficiency.

The second major foundation stone for this work is Julie Cohen’s 
conception of semantic discontinuity.126 Semantic discontinuity is a rich 
prescription Cohen offers as a “structural condition for human 
flourishing” in digital, intermediated systems.127 She defines semantic 
discontinuity as “interstitial complexity within the institutional and 
technical frameworks that define information rights and obligations and 
establish protocols for information collection, storage, processing, and 
exchange.”128 Part of this is what she calls “boundary management” or 
the creation and maintenance of “gaps” in information systems.129

We also build upon less theoretical, more practice-oriented work on 
the need to inject values into software development practices. There is a 
rich emerging literature about “Privacy by Design” or “Security by 
Design.”130 Consistent with these disciplines, we think privacy or security 
can sometimes be implemented only through desirable inefficiency. 

In addition to values-in-design, the other major strand of literature this 
Article embraces begins where Lawrence Lessig’s classic work, Code: 
And Other Laws of Cyberspace, leaves off.131 It starts with Lessig’s 
maxim that “code is law.”132 This assertion has primarily been used by 
other scholars as a descriptive observation of the role software plays in 
delineating what is possible and impossible online—in establishing the 
physics of cyberspace.133 In today’s world, software directs and channels 
                                                                                                                     

125. E.g., Friedman et al., supra note 39, at 69; JOHNSON & NISSENBAUM, supra note 39, at 1.
126. COHEN, supra note 4, at 239.
127. Id.
128. Id.
129. Id. at 248.
130. HARTZOG, supra note 8; Rubinstein, supra note 8, at 1409; see ANN CAVOUKIAN,

PRIVACY BY DESIGN 1 (2009), https://www.ipc.on.ca/wp-content/uploads /Resour ces /
7foundationalprinciples.pdf.

131. LESSIG, supra note 3.
132. Id. at 3.
133. Id. at 6.
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society much like concrete and steel did once before.134 Software is rule-
like and shapes human activity in ways that used to be the sole province 
of architecture and regulation.135

Too many scholars have interpreted Lessig as doing little more than 
issuing a license to imagine that anything is possible online, falling into 
a “science fiction trap.” Too rarely do they consider the process of how
code ends up the way it does (let alone how regulators can make use of 
this process), leaving a significant void in the utility of this body of
work.136

We help fill this gap by focusing our attention on a specific technology 
trend—the emergence of desirable inefficiency—that sees engineers 
engaging in a sort of self-imposed, design-based regulation, integrat ing 
desirable inefficiency when engineers themselves see a deficit of an 
important human value.

Finally, this work builds on a long tradition in computer engineer ing 
of studies that document the patterns of software development. This is an 
important body of work to the computer science community which legal 
scholars have underutilized for too long.137 It can be divided into two 
categories: one focused on coders and the other focused on code. Some 
of these studies dissect the social dynamics and human capital of software 
development.138 We admire this important work immensely, but this 
Article is more closely aligned with the latter group: studies of the 
changing properties of software.139 Our method is to recognize and 
document a new trend in the way software is being written, paying less

                                                                                                                     
134. Id. at 6–7.
135. Id.
136. This is not to say that nobody has explored this territory before us. Two notable early 

works are R. Polk Wagner, On Software Regulation, 78 S. CAL. L. REV. 457, 461 (2005) (stating 
that whether law and software can coexist in the cyberspace context “will and should drive the 
policy decisions that shape the emerging regulatory infrastructure of cyberlaw”), and Tim Wu, 
When Code Isn’t Law, 89 VA. L. REV. 679, 680 (2003) (discussing “[t]he idea that computer code 
may be emerging as a meaningful instrument of political will”).

137. A notable, praiseworthy, and recent exception published in a legal journal is authored, 
unsurprisingly, primarily by computer scientists. See generally Joshua A. Kroll et al., Accountable 
Algorithms, 165 U. PENN. L. REV. 633 (2017) (discussing the auditability of software). We ally 
our work with this important recent article.

138. See generally FREDERIC P. BROOKS, JR., THE M YTHICAL M AN M ONTH: ESSAYS ON 
SOFTWARE ENGINEERING (Anniversary ed. 1995); E. GABRIELLA COLEMAN, CODING FREEDOM:
THE ETHICS AND AESTHETICS OF HACKING (Princeton Univ. Press ed., 2013). For more popular 
writing along these lines, see SCOTT ROSENBERG, DREAMING IN CODE: TWO DOZEN 
PROGRAMMERS, THREE YEARS, 4,732 BUGS, AND ONE QUEST FOR TRANSCENDENT SOFTWARE

(2007); see also KATIE HAFNER & M ATTHEW LYON,WHERE WIZARDS STAY UP LATE: THE ORIGINS 

OF THE INTERNET (1996); TRACY KIDDER, THE SOUL OF A NEW M ACHINE (1981).
139. See generally BEAUTIFUL CODE: LEADING PROGRAMMERS EXPLAIN HOW THEY THINK 

(Andy Oram & Greg Wilson, eds. 2007); STEVE M CCONNELL, CODE COMPLETE (2d ed. 2004).
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attention to the individuals and social forces that bring about the code. 
Although we emphasize the technical over the social, however, we are 
not trying to naturalize software development, treating it as a product of 
evolution or nature. Software is and will remain the product of human 
engineering and organization.140

2.  Values Implicated
Consider how computer systems and networks challenge human 

values. We are not attempting to provide a complete list but instead focus
on some of the problems that designers have addressed with desirable 
inefficiency.

The problem of fairness is perhaps most important. Questions about 
the fairness of algorithms have generated an already-massive literature, 
much of it falling under the interdisciplinary banner of “FAT*,” for
fairness, accountability, and transparency.141 This community has 
interrogated the fairness of using machine learning (ML) models to make 
important decisions about human beings,142 the accountability of systems 
that can put human life or safety at risk,143 and the interpretability of black 
box systems.144 Although none of our examples focus on ML systems, 
we hope to see future work at the intersection of ML and desirable 
inefficiency.145

Our primary example about fairness is, once again, the problem of 
front-running in high-frequency trading. Notice how the notion of 
fairness requires system designers to think beyond the bare technica l 
requirements of the system. There is nothing intrinsically “unfair” in 
allowing a front-running trader who has invested resources in order to 
secure a privileged position in the network from driving up the price of 

                                                                                                                     
140. Cf. Langdon Winner, Do Artifacts Have Politics?, in THE WHALE AND THE REACTOR: A

SEARCH FOR LIMITS IN AN AGE OF HIGH TECHNOLOGY 19 (1986) (discussing the connection 
between technology and politics).

141. An emerging “FAT*” community convene an academic conference. Fairness, 
Accountability, and Transparency, FAT* CONFERENCE, https://www.fatconference.org/ (last 
visited Nov. 2, 2017) [hereinafter FAT*].

142. Barocas & Selbst, supra note 5, at 671–72; see Julia Angwin et al., Machine Bias: 
There’s Software Used Across the Country to Predict Future Criminals. And It’s Biased against 
Blacks, PROPUBLICA (May 23, 2016), https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing.

143. Surden & Williams, supra note 26, at 132.
144. See generally Pasquale, supra note 25 (questioning whether algorithmic applications, 

whose values and prerogatives are hidden within black boxes, are fair). For the program of a recent 
NYU Law conference on “Algorithms and Explanations,” see NYU Law, Algorithms and 
Explanations, http://www.law.nyu.edu/centers/ili/events/algorithms-and-explanations.

145. Machine learning could perhaps be integrated into the desirable inefficiency paradigm 
by considering classification accuracy as a metric of efficiency.
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another trader’s pending trade.146 In fact, the notion that these trades are 
unfair has itself been contested by the front-running traders.147 From their 
point of view, what is unfair is redesigning a system to deny them the 
rents they have earned from their architectural investment.148

Many other values are implicated, in addition to fairness and trust. 
Spam can be characterized as intruding upon the liberty of people to be 
free from unwanted messages. It might also be characterized as disrupting 
the autonomy of email users.

Automated web scrapers or crawlers are regarded as problems of 
legitimacy. By harvesting information at a speed or frequency much 
faster than a human, they consume resources and “cut in line” in front of 
legitimate customers.149 Another challenge to legitimacy comes from 
hackers and thieves who try to guess passwords or passcodes on hosted 
accounts or devices, in order to gain access to the information of the 
rightful owner. And the creators of digital currencies have confronted 
legitimacy concerns of a much larger scale, puzzling over how to prevent 
a holder of a digital “coin” from spending it twice or otherwise hiding 
transactions.150

This is but one list of values that designers have tried to inject into 
services and products using desirable inefficiency: fairness, trust, liberty, 
autonomy, and legitimacy. Later we will elaborate precisely the role 
desirable inefficiency plays in protecting or encouraging these values. 151

We do not think this list is complete; desirable inefficiency will likely be 
useful for protecting other values as well.

3.  The Rise of Values as a Design Constraint
Efficiency has enjoyed a long reign atop the list of priorities for 

computer scientists, because software has not often engaged expressly 
with a broad range of human values, aside from correctness and speed.

We are starting to see more examples of desirable efficiency because 
software and computer networks have slipped the boundaries of business 
processing to become an important part of the fabric of our social, 
political, and aesthetic lives.152 People use software to communicate and 
collaborate, build and maintain connections to other people, organize and 

                                                                                                                     
146. Levine, supra note 70.
147. Id.
148. Id.
149. Id.
150. Sudhir Khatwani, What is Double Spending & How Does Bitcoin Handle it?,

COINSUTRA (Feb. 2, 2018), https://coinsutra.com/bitcoin-double-spending/.
151. Infra Section II.C.
152. Ohm & Reid, supra note 32, at 1676.
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remember.153 Software helps people express themselves, find love and 
sex,154 and bring beauty and inspiration to their lives and the lives of 
others. With software, people vote, agitate and protest, and topple 
preexisting power structures.155 In some societies, it helps determine who 
gets fed, housed, killed, and healed.156

As software becomes an increasingly important part of these non-
economic, non-business, non-corporate parts of our lives, it raises 
difficult questions about human values such as fairness, due process, 
equality, privacy, and liberty more than ever before. From the Facebook 
emotional contagion study157 and trending topics controversies,158 to 
OKCupid’s manipulation of dating results,159 to Apple’s battles with the 
FBI,160 to the roles Cambridge Analytica and Facebook appear to have 
played in the election of Donald Trump,161 it is hard to disagree that 
software does much more today than merely power the economy. And 
when the decision is made to attend to values like these in software, 
desirable inefficiency is an increasingly popular path.

There might be other mechanisms that operate like desirable 
inefficiency—mechanisms that provide an interface between code and 
values. We hope that this Article serves as a prototype for analyses that 
seek to identify and leverage other techniques that engineers have 
organically developed to make space for values in technical systems. 

Finally, we predict that the importance of desirable inefficiency (and 
other engineering responses to the need for values) is likely to grow. As 
software continues to collide with values, we expect developers and 
                                                                                                                     

153. LESSIG, supra note 3, at 4–5.
154. Karen E.C. Levy, Intimate Surveillance, 51 IDAHO L. REV. 679, 679–80 (2015).
155. ZEYNEP TUFEKCI, TWITTER AND TEAR GAS: THE POWER AND FRAGILITY OF NETWORKED 

PROTEST x-xi (2017).
156. Danielle Keats Citron, Technological Due Process, 85 WASH U. L. REV. 1249, 1249–

50 (2008).
157. Adam D. I. Kramer et al., Experimental Evidence of Massive-Scale Emotional 

Contagion through Social Networks, 111 PROC. NAT’L ACAD. SCI. 8788, 8788 (2014); see Gregory 
S. McNeal, Facebook Manipulated User News Feeds to Create Emotional Responses , FORBES

(June 28, 2014, 1:10 PM), http://www.forbes.com/sites/gregorymcneal/2014/06/28/facebook-
manipulated-user-news-feeds-to-create-emotional-contagion/.

158. Ian Sherr, Facebook’s Trending Topics Hits Turmoil Over Fake News Story, CNET
(Aug. 29, 2016, 2:26 PM), https://www.cnet.com/news/facebook-trending-topics-megyn-kelly-
fake-news-story-controversy/.

159. Cheryl V. Jackson, Why Dating Site OKCupid Performed Secret Experiments on its 
Users, CHI. TRIB. (Apr. 22, 2015, 3:05 PM), http://www.chicagotribune.com/bluesky/ 
originals/chi-christian-rudder-okcupid-bsi-20150422-story.html.

160. Breaking Down Apple’s iPhone Fight with the U.S. Government, N.Y. TIMES (Mar. 
21, 2016), http://www.nytimes.com/interactive/2016/03/03/technology/apple-iphone-fbi-fi ght -
explained.html (explaining the legal battle between Apple and the FBI).

161. Matthew Rosenberg et al., How Trump Consultants Exploited the Facebook Data of 
Millions, N.Y. TIMES, Mar. 17, 2018 at A1, https://www.nytimes.com/2018/03/17/us/politics/ 
cambridge-analytica-trump-campaign.html.
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system designers to look outside the efficiency toolkit with increasing 
frequency.

II. CHARACTERIZING DESIRABLE INEFFICIENCY

In Part I, we singled out several systems that use inefficiency in ways 
counter to the tendencies of computer science. In this Part, we 
systematically organize these examples into a rigorous characterizat ion 
of desirable inefficiency. By understanding the goals that these systems 
achieve through inefficiency, we can understand the choices available to 
system designers and regulators who hope to wield ineffic iency in a bid 
to tame code. Amidst this definitional and theoretical work, we introduce 
even more examples of desirable inefficiency, particularly a large and 
exciting family of systems that utilize so-called proof of work algorithms, 
most notably cryptocurrencies like Bitcoin and Ethereum.

Finally, we connect our formal definitions and examples to the human 
values that have served as the central motivation for these developments. 
Systems of desirable inefficiency will again be shown to promote and 
protect values such as fairness, autonomy, and legitimacy.

A. Defining Desirable Inefficiency
We define desirable inefficiency to describe a digital system that 

solves a given problem in an inefficient manner when compared to a 
much more efficient solution to a closely related problem. It is crucial to 
our analysis to define the necessary characteristics of the paired problems 
that fulfill this definition, particularly to make this concept 
comprehensible to economists, who do not use the term inefficiency in 
the same way.

1.  Core Definitions
We begin our analysis by defining what we mean by efficiency, which 

we define in computer scientific rather than economic terms:

The efficiency of a system is the extent to which it 
minimizes the consumption of time, energy, space, or cost in 
satisfying a specification of correctness for a given problem.

First and foremost, efficient systems should be correct—they need to 
actually achieve the purpose they were tasked with addressing.162 For 
example, a system must “put numbers in sorted order,” “find the fastest 
driving directions to Boulder, Colorado,” or “process all valid credit card 
transactions.”

An efficient system must be more than just correct, however; it must 
                                                                                                                     

162. Zohar Manna & Amir Pnueli, Axiomatic Approach to Total Correctness of Programs,
3 ACTA INFORMATICA 243, 243 (1974).
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also minimize resource consumption in the process of solving its 
problem. A file must download as quickly as possible or a car must 
consume as little gas as possible. Although we specifically name time, 
energy, space, and cost in our definition, since they are among the most 
common aspects of a computational system to be optimized, many other 
qualities (throughput, latency, transistor density, etc.) could appear in 
their place. A system could even optimize several of these quantities at 
once, balancing the running time of a program with the cost of developing 
it.

An inefficient system is defined as the converse of an efficient system:

An inefficient system fails to minimize the consumption 
of time, energy, space, or cost in satisfying a specification of 
correctness for a given problem.

In other words, every inefficient system could be replaced by a more 
efficient alternative that meets the same standard for correctness but 
needs less time, space, energy, or cost to do so. For example, it would be 
inefficient in terms of both energy and cost to travel across the country in 
a gas-guzzling SUV if a smaller hybrid were available. It would be 
inefficient in terms of time if there were the option to fly. In terms of 
cargo-carrying capacity, however, both flying and the smaller hybrid 
would be less efficient than driving an SUV.

As outlined in Part I, according to conventional computer science, 
inefficient systems are undesirable. Theoreticians toil to develop new 
algorithms in a never-ending search for slightly smaller running times. 
Silicon Valley giants pour vast resources into stamping out profit-
draining sources of inefficiency.

What circumstances, then, make inefficiency desirable? The hallmark 
of desirable inefficiency is in the way we define the problem to be solved. 
A desirably inefficient solution always solves at least two distinct 
problems, a basic problem and an enhanced problem. Building on the 
earlier two definitions, desirable inefficiency can be defined as follows:

A desirably inefficient solution fails to minimize the 
consumption of time, energy, or space in satisfying a 
specification of correctness for a given basic problem in 
order to address a different, related enhanced problem.

Much rests on defining further the attributes of problems that qualify 
as basic and enhanced pairs. Before we formalize this part of the 
definition, which we think addresses some objections we have received 
from economists, consider some examples. The following table places 
the examples presented in Part I and other examples described in this Part 
within the framework of this definition.
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System Basic Problem Enhanced 
Problem

Resource 
Expended

More Efficient 
Alternative

Smartphone 
password 
lockout 
mechanism

A user can access 
the data and apps 
on a smartphone

Thieves (and the 
FBI) cannot access 
the data, but 
forgetful users can

Time A user could 
access the data 
faster after 
mistyping a 
password if 
there were no 
delays

IEX fiber 
loop

Information is 
exchanged 
between IEX and 
traders

Unfair trading is 
prohibited

Time / 
Latency

Traders could 
get prices and 
execute trades 
faster without 
the fiber loop

Proof of work 
for spam

Emails are sent Spam is blocked Energy and 
computation

Emails could be 
sent without 
solving a 
computational 
puzzle

Time-release 
crypto

Encrypted data is 
unlocked

Encrypted data is 
easy to unlock in 
the future

Time via 
computation

Data could 
require less 
computation to 
unlock

Bitcoin’s 
blockchain

Transactions are 
validated

Transactions are 
validated fairly 
(integrity of 
currency is 
preserved)

Energy and 
computation

Proof of work 
could be easier 
or removed 
entirely

Websites with 
captchas

A user accesses a 
particular web 
page

Only human (and 
not robot) users 
can access the web 
page

Time via 
mental 
exertion

The captcha 
could be 
removed 
entirely, making 
web browsing 
much faster

Internet 
tromboning

Route packets 
from point A to 
point B

Avoid surveillance 
by the NSA

Time / 
Latency

A faster route is 
available

Table 1: Examples of Desirable Inefficiency

2.  Basic and Enhanced Problems
The division of problems into basic and enhanced stands as the 

cornerstone of our definition. Desirable inefficiency can be identified 
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only relative to an alternative solution, one which addresses a similar but 
non-identical problem, which we call the basic problem. 

At this point, the economist will likely object that there is nothing 
inefficient about our examples. What we call desirable inefficiency is 
simply the efficient solution to the enhanced problem.163 Every one of our 
examples finds computer scientists and engineers designing an efficient 
(if clever and counterintuitive) solution to the enhanced problem, one 
which merely relies on a different definition of the welfare function than 
the basic problem, so what role is the basic problem serving at all?164 The 
fact that a related basic problem exists might be interesting but does not 
merit misusing the label inefficiency, or so the economist will protest.

We think our fellow computer scientists will understand at least the 
intuition of our word choice, as well as the need to pair enhanced and 
basic problems. What motivates us is the cognitive dissonance we 
ourselves experienced when we were first confronted by algorithms 
crafted to take the inefficient path, for example the first time we 
considered proof-of-work, time-lock cryptography, or the IEX fiber loop. 
We argue that the root of this dissonance is the understanding that there 
is another, related but more basic, problem that can be (or has been) 
solved, which is measurably more efficient than the solution sitting 
before us. This ability to identify another, more efficient solution tugs on 
the primeval, lizard part of our computer-scientist brains, the neural 
pathways that were forged in our first courses in algorithmic complexity. 
Good programmers stamp out inefficient code. Why have these 
programmers—all talented systems designers—abandoned this 
orthodoxy? 

We try to formalize the computer scientist’s intuition, but to do so, we 
must precisely constrain the category of problems that may by definit ion 
properly be classified as basic. Without these constraints, the view of the 
economist would prevail. Every potential enhanced problem could be 
paired with another related, simpler, purportedly basic problem, which 
would support the economist’s view that desirable inefficiency is simply 
efficiency redefined.

For example, reconsider the SUV. The SUV is inefficient in fuel 
consumption but efficient when it comes to cargo-carrying capacity. One 
might wonder, then, whether the SUV is a desirably inefficient vehicle 
under our definition, solving the “cargo carrying” enhanced problem 
while sacrificing the “fuel efficiency” basic problem. We do not think 
this meets our definition. A simple tradeoff is not the same thing as 
desirable inefficiency. Solutions that merely sacrifice one measure of 

                                                                                                                     
163. RICHARD A. POSNER, ECONOMIC ANALYSIS OF LAW 10 (2d ed. 1977).
164. Id.
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efficiency for another are arguably inefficient, but they are not desirably 
inefficient.

To take a more computational example, consider the paradigmatic 
family of algorithms used for studying efficiency: sorting algorithms. 165

The task is to take a long list of words and return them in alphabetica l 
order.166 Generations of computer scientists have scrutinized various 
algorithms for accomplishing this task, and it serves as the primary 
example used to teach students about efficiency and complexity.167

Sorting algorithms can be efficient in terms of time—they can 
minimize the number of seconds it requires to sort a long list—or space—
they can minimize the amount of copies of items in the list that need to 
be temporarily stored in the computer’s memory—or both.168 But an 
algorithm that tries to achieve efficiency of both time and space (say,
heapsort) might seem inefficient as being slightly slower than an 
algorithm that does not economize on memory (say, quicksort).169

We would not conclude that heapsort is desirably inefficient. “Sort 
while conserving space and time” is not an enhanced version of “sort 
while conserving only time.” It is merely a tradeoff, akin to the SUV’s 
failure to economize on fuel in order to provide for more cargo capacity. 

The key to distinguishing desirable inefficiency from mere efficiency 
is to add a single mandatory constraint to the way we define the enhanced 
and basic problems: enhanced problems require human judgment, values, 
or discretion in the definition of success or failure, while basic problems 
are reducible to mechanistic metrics of success and failure. Success for 
the delivery of email is defined mechanistically: did the recipient mail 
server receive all of the bits comprising the email message without 
modification within a set threshold of time?170 In contrast, success for a 
spam blocker, the subject of a desirably inefficient solution described in 
the next sub-part,171 requires a human’s judgment: the software succeeds 
if it blocks spam but allows through non-spam, however each user may 
define those terms.172 In fact, because spam blockers are never perfect, 

                                                                                                                     
165. CORMEN ET AL., supra note 41, at 148 (“Many computer scientists consider sorting to 

be the most fundamental problem in the study of algorithms.”). 
166. Id. at 206.
167. See id. at 147–50 (providing a detailed investigation of the algorithmic complexity of 

various sorting algorithms in a classic text).
168. Id. at 148 (discussing running time and ability to sort “in place” of various sorting 

algorithms).
169. Compare id. at 151–69 (analyzing heapsort), with id. at 170–90 (analyzing quicksort).
170. RFC 2821: Simple Mail Transfer Protocol (Apr. 2001), https://www.ietf.org/rfc/ 

rfc2821.txt (defining Internet standard for the delivery of email).
171. Infra Section II.B.
172. Mehran Sahami et al., A Bayesian Approach to Filtering Junk E-mail 55 (1998),

http://erichorvitz.com/ftp/junkfilter.pdf.
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the definition of spam blocking requires a second layer of human 
judgment: a successful spam blocker blocks enough spam while letting 
through enough non-spam.173

The fact that enhanced problems require human judgment, values, or 
discretion while their corresponding basic problems do not, gives rise to 
two other corollary features often characteristic, but not necessary, of 
desirable inefficiency: (1) basic problems lend themselves to quantifiab le 
definitions of correctness, while enhanced problems do not; and (2) basic 
problems tend to have a long track record of being solved by computer 
scientists while attempts to solve enhanced problems tend to be newer. 
Consider each of these in turn. 

First, a lack of quantifiability tends to flow from the defining 
characteristic of human judgment. It is the role of the human that tends to 
make the enhanced problem so difficult to quantify. Human judgment is 
unpredictable and inconsistent. Often, success or failure is in the eye of 
the beholder. What is unwelcome spam for one user may be considered 
desirable marketing email to another.174

Second, basic problems tend to come with historical track records of 
computer scientists and engineers trying to solve them. We have been 
trying to transmit email for many more years than we have been designing 
systems to block spam.175

This second characteristic might flow from the changing role of 
technology in society. Before the rise of the Internet, software tended not 
to be deeply entwined with our daily lives and interactions. In general, 
this meant that software designers were primarily addressing industr ia l 
goals, the kind that lent themselves to mechanistic problem definitions. 
In the first decade or two of the commercial Internet, software became 
closely associated with human communication, which gave rise more 
often to problems that were difficult to reduce to a number, such as 
spam.176 Today, software permeates systems that directly drive every 
human interaction. Machine learning systems match people for romantic 
encounters.177 Internet of Things sensors collect information about our 
                                                                                                                     

173. Id. at 56.
174. Id. at 60.
175. Computer scientists did not attempt to build systems to recognize spam until junk email 

emerged as an important problem shortly after the commercialization of the Internet in the mid-
1990’s. BRIAN M CWILLIAMS, SPAM KINGS xi–xv (1st ed. 2005) (describing history of spam on the 
Internet). Email, on the other hand, was invented decades earlier. HAFNER & LYON, supra note 
138, at 189.

176. HAFNER & LYON, supra note 138, at 214.
177. The Online Dating Engine That Assesses Your Taste in the Opposite Sex (And Whether  

They Find You Attractive), MIT TECH.REV. (Nov. 18, 2013), https://www.technologyreview.com/ 
s/521826/the-online-dating-engine-that-assesses-your-taste-in-the-opposite-sex-and-whether-
they/.
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most intimate and sensitive activities.178 Artificial intelligence systems 
increasingly choose society’s winners and losers and implicate civil 
rights.179

Taking the defining characteristic and the two corollary characterist ics 
into consideration, we can now explain why the SUV and heapsort, while 
inefficient, are not desirably inefficient. These are both solutions to 
mechanistically defined problems that do not directly implicate human 
values or human judgment. Calculating cargo-carrying capacity and 
measuring the memory used by an algorithm are not the kind of human-
driven problems that qualify as enhanced in our definitions.

3.  Human Values Reduced to Quantifiable Solutions
Only the primary criterion—human judgment, values, or discretion in 

the definition of the problem to be solved—is strictly necessary. 
Although a lack of quantifiability is commonly associated with enhanced 
problems, it is not necessary. Sometimes enhanced problems lend 
themselves to quantifiable definitions of correctness. Take, for example, 
the final entry in Table One, Internet tromboning.180 Due to the vagaries 
of Internet routing and the complicated economic relationships between 
companies that operate routers, traffic will occasionally follow 
extraordinarily circuitous paths around the globe, a phenomenon known 
as tromboning.181 For example, it is possible that a message sent from 
two countries in Northern Africa could pass through the United States.182

Although tromboning is inefficient from a speed perspective (the 
basic problem), it can be desirable when the goal is to ensure that web 
traffic avoids countries with particular objectionable policies (the 
enhanced problem).183 For example, a user in France concerned about 
NSA surveillance might prefer that her traffic take a slow, convoluted 
path outside of the United States rather than a faster, direct route that 
passes through New York City.184 A system implemented to satisfy this 
preference would classify as desirably inefficient. 

                                                                                                                     
178. Meg Leta Jones, Privacy Without Screens & the Internet of Other People’s Things, 51 

IDAHO L. REV. 639, 641 (2015); Scott R. Peppet, Regulating the Internet of Things: First Steps 
Toward Managing Discrimination, Privacy, Security, and Consent, 93 TEX. L. REV. 85, 129–32
(2014).

179. Barocas & Selbst, supra note 5, at 673; Citron & Pasquale, supra note 25, at 3.
180. ANNE EDMUNDSON ET AL., CHARACTERIZING AND AVOIDING ROUTING DETOURS 

THROUGH SURVEILLANCE STATES 2 (2016), http://www.cs.princeton.edu/~annee/pdf/ 
surveillance.pdf.

181. Id.
182. Id.
183. Id.
184. Id.
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This proposed solution to the enhanced problem is readily 
quantifiable: has the communication passed through a server in the 
United States? Even though this is the kind of precisely defined problem 
that can be stated mathematically and confirmed programmatica lly—
thereby not meeting the first corollary criterion—this is still desirable 
inefficiency. Although quantifiable and precise, this specification of 
correctness is infused with human values: it reflects both a fear of 
surveillance and a judgment about the likelihood that a country will 
engage in aggressive surveillance, even though it was reducible to a 
precise specification, one a machine could measure.185

In other words, modern users of the Internet might embrace 
tromboning because it represents a translation of a values-oriented goal—
avoid unchecked surveillance—into a concrete requirement. It is a 
heuristic, a rule of thumb that approximately but concretely protects, 
preserves, or gives space for a value.

Time-lock cryptography provides another example of quantifiab le 
desirable inefficiency.186 A public figure might order that her digita l 
records be sealed upon her death using a time-lock cryptographic system 
configured to become accessible in forty years.187 This establishes a 
precise, quantifiable goal, but it is merely a heuristic reflecting an 
underlying human judgment, the figure’s attempt to balance a public’s 
desire to know more about her life against perhaps a desire to protect the 
privacy of her heirs or to let the distance of time place her records in more 
of a historical context.

4.  Two Categories Not Covered
It will help sharpen the outer boundaries of our definition to give a 

few examples of systems we do not consider examples of desirable 
inefficiency, even though they share some features with the category.

First, we exclude non-digital systems. We think the trend we recount 
in Part I is intrinsically connected to digital hardware and software. We 
understand, however, that many of the concepts we discuss apply to pre-
digital and non-digital examples. We tend to treat these examples as 
important analogs rather than members of the class we are defining. In 
future work, we may broaden our definition to connect our insights to 
examples beyond computer systems.
                                                                                                                     

185. Andrew Clement & Jonathan A. Obar, Canadian Internet “Boomerang” Traffic and 
Mass NSA Surveillance: Responding to Privacy and Network Sovereignty Challenges , in LAW,
PRIVACY AND SURVEILLANCE IN CANADA IN THE POST-SNOWDEN ERA 13, 30–35 (Michael Geist 
ed., 2015) (proposing ways to avoid Internet routing paths through the United States for 
communications between two parties in Canada).

186. Rivest et al., supra note 94.
187. Id. at 1–2.
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Second, we exclude systems that do no more than slow down the 
operation of a computer to match the speed of human processing systems. 
For example, a large class of problems we exclude are those related to the 
fact that human sensory and cognitive abilities cannot match the billions 
of calculations per second that a modern processor achieves. Just as 
engineers build printer and USB device drivers to allow a computer to 
communicate with an idiosyncratic range of typically slower add-on
hardware,188 some inefficient (but not desirably inefficient) solutions can 
be understood as “drivers” for managing particularly unpredictable and 
fiddly “human devices” with which many technical systems must coexist. 
Animation rates and input systems must slow and simplify to the speed 
and capabilities of human cognition, even if the computer itself can 
achieve far faster operation. A computer might be able to render a virtua l 
car race in the blink of an eye, but a human player will have considerably 
more fun if the race takes place slowly enough for her to participate. 189

This outcome may be inefficient, but we do not consider it to fall under 
the umbrella of desirable inefficiency.

This leaves us in an admittedly nuanced stance with respect to systems 
that slow down computer processing. IEX’s delay qualifies as desirable 
inefficiency, while the slowness of the video game racecar does not. Once 
again, we point to the criterion and its two corollaries we use to identify 
basic problems. IEX’s delayed stock exchange trades bear all three 
hallmarks of basic problems: they help create the hard-to-quantify human 
value of fairness, and they relate to a problem we have long tried to solve 
without the delay.190 In contrast, the slowness of the video game racecar 
does not satisfy any of these three criteria. 

This also distinguishes desirable inefficiency from Julie Cohen’s 
work. Cohen’s examples tend to focus on protecting the development of 
the individual (and to a lesser extent the group) from disruption by 
powerful information entities including governments and platforms in 
order to give “breathing room” for people to engage in the “play of 
everyday practice.”191 With this focus, Cohen might include examples of 
inefficient system design intended merely to put a computer’s processing
speed in sync with human capabilities.   

B. Desirable Inefficiency and Human Values
Let us return to the list of values presented in Part I, which we argue 

have spurred many of the desirably inefficient systems that have been 
developed: autonomy, legitimacy, fairness, trust, liberty, and integrity.192

                                                                                                                     
188. JONATHAN CORBET ET AL., LINUX DEVICE DRIVERS 38–39 (3d ed. 2005).
189. JASON GREGORY, GAME ENGINE ARCHITECTURE 310–16 (2d ed. 2014).
190. LEWIS, supra note 11.
191. COHEN, supra note 4, at 22. 
192. Supra Section I.D.
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How have designers implemented desirable inefficiency as a way to inject 
human values such as these into their systems? What follows is a 
compendium of felt needs that have, to date, given rise to desirably 
inefficient systems.

1.  A Rich Array of Values
Before diving into a few particularly dominant values, we take this 

opportunity to survey the diversity of values that our example systems 
achieve through desirable inefficiency. Several systems use inefficiency 
to support autonomy. Internet tromboning does so explicitly, routing web 
traffic away from countries that have reputations for mass surveillance. 193

Dwork and Naor’s approach to spam advances autonomy more subtly, 
protecting an individual’s cognitive ability to conveniently sift through 
relevant correspondence.194 This value could alternatively be framed as 
liberty, the ability to maintain one’s space for communication unimpeded 
by mountains of unsolicited advertisements.

Time-release cryptography, which makes it possible to archive 
information for long periods of time, makes possible eventual 
transparency and historical continuity while preserving the dignity of 
those who seek to temporarily shield their private documents from the 
public eye.195 These sorts of time capsules tend to also facilitate an 
element of community, the shared gratification of discovering previous ly 
concealed information and receiving a message sent through time from 
the past. In many cases, captchas make forming communities online 
possible by filtering out robots that would otherwise fill discussion 
forums with spam or even overload websites with fake traffic. 196

Several systems also protect various forms of security. In situat ions 
where the risk of traffic falling into the wrong hands is sufficiently high, 
use of techniques like Internet tromboning could be matters of life and 
death.197 Similarly, a smartphone lockout mechanism could keep 
incriminating information out of the hands of a repressive regime. 

We recognize that this accounting is incomplete. Whether these are 
the correct list of values or the only values connected to those digita l 
systems remains open to debate. Still, this exercise demonstrates the rich 
array of values for which desirable efficiency can create space. In the 

                                                                                                                     
193. EDMUNDSON ET AL., supra note 180.
194. Dwork & Naor, supra note 21.
195. Rivest et al., supra note 94.
196. See Brad Yale, The CAPTCHA: A History, a Problem, Possible Solutions, INFORMIT

(Sept. 10, 2014), http://www.informit.com/blogs/blog.aspx?uk=Why-Are-CAPTCHAs-So-
Awful.

197. See EDMUNDSON, supra note 180 (defining “tromboning” as the situation “whereby an 
Internet path starts and ends in a country, yet transits an intermediate country”).
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following Sections, we explore a few of the most prominent values in 
depth.

2.  Legitimacy
Many of the systems we have discussed use inefficiency to evaluate 

the legitimacy of their participants. The most concrete example of a 
system with this enhanced goal is a captcha.198 Captchas exist to 
distinguish human users from robots by presenting small puzzles that 
remain difficult for computers to solve.199 The mere act of being able to 
decipher smeared text or identify all images that contain cats (as opposed 
to dogs and hamsters) is evidence that a web-surfer is a legitimate human 
being.200

The smartphone lockout mechanism tests for a different form of 
legitimacy—whether a user actually knows the phone’s password.201 If a 
user has simply pressed the wrong button or mixed up a couple of digits, 
it is likely that he will arrive at the correct password in a few tries, 
enduring, at worst, a few seconds of wasted time. An intruder with little 
or no knowledge of the password, however, will have to begin 
systematically guessing, a strategy rendered virtually impossible by the 
lockout mechanism’s time delays.202

On a dramatically larger scale, Bitcoin applies a similar approach to 
its network of thousands of transaction-processing nodes.203 As we 
discussed above, one of the purposes of Bitcoin’s proof of work is to 
ensure that transactions are approved via a loose form of voting.204 When 
a new block containing the preceding ten minutes of transactions is added 
to the end of the blockchain, other nodes express their belief that the block 
is valid by building on it in their future mining efforts.205 Rather than 
explicitly holding an election, which would be easy to rig by creating 
armies of fake nodes, Bitcoin nodes vote with their computational effort, 

                                                                                                                     
198. See Yale, supra note 196.
199. See id.
200. See Vinay Shet, Are You a Robot? Introducing “No CAPTCHA reCAPTCHA”, GOOGLE 

SECURITY BLOG (Dec. 3, 2014), https://security.googleblog.com/2014/12/are-you-robot -
introducing-no-captcha.html.

201. See APPLE, IOSSECURITY: IOS 11, at 15 (Jan. 2018), https://www.apple.com/business/ 
docs/iOS_Security_Guide.pdf.

202. See William Enck & Adwait Nadkarni, What if the FBI Tried to Crack an Android 
Phone? We Attacked One to Find Out, CONVERSATION (Apr. 8, 2016, 2:23 PM), 
http://theconversation.com/what-if-the-fbi-tried-to-crack-an-android-phone-we-attacked-one-to-
find-out-56556.

203. See NARAYANAN ET AL., supra note 102, at 33.
204. See id.
205. See id.
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a substance that is impossible to forge.206 In this fashion, Bitcoin uses 
proof of work to ensure that only nodes with legitimate computationa l 
capability are able to vote to approve transactions.207

3.  Fairness, Trust, and Integrity
Many of the values discussed in the preceding Sections are not ends 

in themselves. Rather, they create the conditions necessary to achieve 
larger values that inspire confidence among users. Here, we discuss three 
of the most important of these values: fairness, trust, and integrity.208

Fairness often entails establishing a level playing field among 
participants.209 By increasing the minimum time necessary to 
communicate stock transactions, IEX purports to ban a perceived unfair 
type of behavior: exploiting network architecture as a way to step inside 
another trader’s transaction.210 Among its many purposes, Bitcoin’s proof 
of work is structured to prevent double spending and transaction 
cancelling that would give certain users unfair financial power.211 Even 
captchas enforce a form of fairness where human users cannot be beaten 
out by robots with faster reaction times.212

Often, fairness serves as an intermediate step toward a still- large r 
value: trust.213 In many of our examples, it is trust that engineers 
ultimately seek when they turn to desirable inefficiency. IEX does not 
require fairness for fairness’s sake. Likewise, participants in Bitcoin do 
not aim for legitimacy or fairness as an intrinsic end. Instead, these values 
serve to inspire confidence among users—to buttress the perceived 
integrity of the overall platform. Both of these examples involve the 
exchange of financial products, putting users at substantial risk if the 
                                                                                                                     

206. See id.
207. As a consequence, Bitcoin’s “voting rights” are distributed according to computational 

ability. A node with a faster CPU will receive proportionally greater electoral influence. This 
influence, in turn, will mirror the financial means that allowed the computer’s owner to purchase 
this faster hardware. See id.

208. Our work connects to the growing discipline of Fairness, Accountability, and 
Transparency. FAT*, supra note 141.

209. Cf. Lee A. Fennell & Richard H. McAdams, Fairness in Law and Economics: 
Introduction 1, 1 (Coase-Sandor Inst. For Law And Econ., Working Paper No. 704, 2014), 
https://chicagounbound.uchicago.edu/cgi/viewcontent.cgi?article=2381&context=law_and_econ
omics (“[F]airness preference[]. . . [means that] individuals will, at a cost to themselves, choose 
to distribute wealth to others, reward those who contribute to public goods, or punish those who 
free-ride.”).

210. See Levine, supra note 70.
211. See NARAYANAN ET AL., supra note 102, at 38.
212. See Yale, supra note 196.
213. Cf. Neil Richards & Woodrow Hartzog, Taking Trust Seriously in Privacy Law, 19 

STAN. TECH. L. REV. 431, 435 (2016) (arguing that “[t]trust in information relationships is 
necessary for the digital economy not just to function, but to flourish”).
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systems do not function as advertised. By inspiring trust in the integrity 
of their systems, the creators of IEX and Bitcoin help to ensure the 
success of these undertakings.

Many other systems we have described fit into the admitted ly 
inclusive expanse of fairness, trust, and integrity. Dwork and Naor’s 
solution to spam aims to level the playing field between humans and 
spammers, inspiring trust in the provenance and value of messages that 
are received.214 Many websites rely on captchas as an essential tool for 
inspiring trust in e-commerce and gaming platforms that could otherwise 
be overrun by robots with lightning-quick reaction times.215 Time-release 
crypto enables public figures to trust that their documents will remain 
safely out of reach for decades to come.216

III. DESIGN PATTERNS OF DESIRABLE INEFFICIENCY

Desirably inefficient systems tend to possess four distinct ive 
attributes: filtering/separating, adversarial countermeasures, tunability, 
and decentralization. Although not every system contains these attributes, 
and some may contain none, these qualities are common design patterns 
found in many of the desirably inefficient systems we have studied. 217

Most of our examples operate through filtering mechanisms, segregating 
users or actions into “good” and “bad” categories. In order to remain 
effective under adversarial circumstances, a system must be able to verify 
that all users endure the requisite amount of inefficiency. In a select few 
cases, the inefficiency is built into the very hardware architecture of the 
system. Inefficiency itself is plastic and tunable—it can be ratcheted up 
or down and even customized for each user. Finally, desirable 
inefficiency often depends on (and on the flip side, can help create the 
necessary preconditions for) decentralized systems.

Designers should treat these four patterns as design templates for 
creating new desirably inefficient systems. Scholars and regulators need 
to understand how these patterns can help desirably inefficient systems 
advance law and policy goals.

A. Filtering and Separating
Several of our example applications of inefficiency achieve their goals 

by distinguishing between different classes of users. Dwork and Naor’s 
approach to spam, for example, aims to separate spammers from non-

                                                                                                                     
214. See Dwork & Naor, supra note 21, at 139.
215. Cf. Yale, supra note 196 (discussing how CAPTCHA technology can be used to serve 

a deterrence purpose).
216. See Rivest et al., supra note 94.
217. See, e.g., ALEXANDER ET AL., supra note 30, at 3, 13, 19, 617.
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spammers.218 It does so by magnifying the disproportionate number of 
messages that each group sends into computational work that is 
debilitating for spammers but negligible for anyone else.219 In the process 
of doing so, this inefficiency even goes a step further: it punishes one of 
the groups it identifies, making the average spammer’s email patterns so 
expensive that sending spam at all is no longer a feasible business 
model.220 In this fashion, Dwork and Naor’s proposal filters spammers 
out from other, well-behaved email users, distinguishing and 
economically ruining them.

Many of the examples of desirable inefficiency from Part I seek to 
discriminate between flows of inputs, separating the “good” from the 
“bad” through their behavior. Captchas do so explicitly, posing puzzles 
that only humans can solve in order to distinguish them from digita l 
automatons.221 Similarly, Dwork and Naor’s proposal to limit spam 
introduces a “pay to play” barrier in the form of proof of work that 
distinguishes legitimate users, who would barely notice the obstacle at 
all, from spammers, who would no longer be able to afford the cost of 
sending millions of emails.222 Smartphone password lock-out 
mechanisms are designed to punish an adversary trying to break into a 
phone far more harshly than a clumsy user, who might only mistype a 
password once or twice.223 No doubt, somebody inside Apple studied 
human behavior and concluded that legitimate users tend to require up to 
four guesses; unauthorized password guessers often need more than six. 
In the liminal space between three and six, Apple finds especially clueless 
users and especially savvy (or lucky) imposters, and they tune their 
timings accordingly.

The separating done by desirable inefficiency can never be perfect. 
There will be false positives and negatives. Some legitimate iPhone users 
will mistype their passwords seven times. Some password guessers will 
get lucky and guess a password on the fifth try. The best we can do is try 
to find the sweet spot and monitor the results. But unlike other policy 
levers, if we misjudge our first attempt, we can retune the policy dial, 
trying to tamp down the false positives and false negatives.

B. Adversarial Countermeasures and Hardware Solutions
The world resists desirable inefficiency. Many desirably ineffic ient

systems operate in an adversarial setting: a user or system designer is 
                                                                                                                     

218. Id.
219. Dwork & Naor, supra note 21, at 4.
220. Id.
221. Yale, supra note 196.
222. Dwork & Naor, supra note 21, at 4.
223. APPLE, supra note 201, at 15.
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opposed by an adversary whose goals clash with her own.224 The 
spammer wants to send more messages; the phone thief or FBI agent 
wants to guess passwords more rapidly; and the high-frequency trader 
wants to front-run a trade.

Given the adversarial nature of desirable inefficiency, each of these 
systems must ensure that the inefficiency actually takes effect—that there 
are no loopholes the adversaries can exploit to operate efficiently.225

Usually, a designer competes in this adversarial contest through software, 
incorporating code that anticipates and counteracts the adversaries’
moves, engaging in a game of chess. Captchas, proof of work methods, 
and Internet tromboning all rely on software routines to impose the 
inefficiency and to guard against workarounds adversaries might try to 
deploy.226

Sometimes designers choose to use hardware rather than software to 
make desirable inefficiency more difficult for the adversary to subvert. 
The smartphone lockout mechanism is a product of the device’s software 
operating system but it is made difficult to avoid thanks to the clever use 
of hardware.227 For example, a key ingredient that makes an iPhone 
difficult to access without the passcode is a dedicated chip known as the 
Secure Enclave.228

The surprising virtue of selecting hardware over software is best seen 
in the use of hardware by IEX. IEX creates inefficiency by forcing all 
communication with the exchange to travel along thirty-eight miles of 
fiber-optic cable.229 Critically, this configuration does not need a 
software-based “checking” step to ensure that traders have endured the 
appropriate time delay. The mere fact that a message reached IEX at all 
means that it travelled through the fiber loop and, thereby, experienced 
inefficiency.230 In sum, IEX’s fiber loop is a self-enforcing mechanism 
for inflicting inefficiency, a design choice from which we will draw 
inspiration for policy in Part IV.

Why did IEX choose to implement this delay using hardware rather 
than software? There are many benefits that flow from this decision, some 
quite counter-intuitive, and they deserve an extended discussion. Recall 
that the primary benefit the thirty-eight-mile fiber loop affords is a 350-
                                                                                                                     

224. See Paul Ohm, Broken Promises of Privacy: Responding to the Surprising Failure of 
Anonymization, 57 UCLA L. REV. 1701, 1723–24 (2010) (discussing the role of the adversary).

225. Cf. ADAM SHOSTACK, THREAT M ODELING: DESIGNING FOR SECURITY 40–41 (2014)
(describing the related computer security notion of adversary threat modeling).

226. See Yale, supra note 196 (discussing captchas); Dwork & Naor, supra note 21, at 142 
(proposing proof of work for spam).

227. See APPLE, supra note 201, at 12.
228. Id. at 7.
229. See LEWIS, supra note 11, at 177–78.
230. Id.
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microsecond delay on all communications into and out of the trading
platform. 231 IEX’s engineers could have created precisely the same 
amount of delay with a simple software routine, and they could have done 
so at considerably less expense.232

It is a widely held maxim in computer science that any hardware 
solution can be solved using software instead.233 Although solving a 
problem using hardware or software may be equivalent from a strictly 
algorithmic point of view, the two approaches vary in important ways. 
Most often, people focus on the advantages of software over hardware.234

Software is intrinsically more flexible than hardware.235 Software 
systems are orders of magnitude less expensive to prototype than 
equivalent hardware.236 Engineers have created development 
environments for software that allow a continuous cycle of redesign and 
reinvention—many forms of software exist simply to generate other 
software.237 Jonathan Zittrain celebrates the “generativity” of software, 
contrasting it the relatively less flexible hardware platforms.238

The relative inflexibility of hardware is probably what inspired IEX 
to choose it. A thirty-eight mile loop is a promise of persistence spun out 
of strands of glass. IEX cannot simply reengineer away the 350-
microsecond delay from a keyboard. It has bound itself to the mast by 
reifying its design decision. Customers can be sure that the delay is not 
something that can be changed on a whim.

It promotes transparency and thus external verifiability. The fiber loop 
is stored inside a physical box inside a machine room in New Jersey.239

An experienced external observer could in a few hours trace the cabling 
in that room to verify that the box sat on the critical path between the 
outside world and IEX. IEX could, of course, engage in complex 
                                                                                                                     

231. See LEWIS, supra note 12, at 177–78.
232. Causing a computer program to delay a set amount of time is a common programming 

task. Many programming languages provide a primitive function—often called sleep() or 
delay()—to provide this capability in a single function call. See, e.g., Eric S. Raymond, Time, 
Clock, and Calendar Programming in C, CATB (Sept. 9, 2017), http://www.catb.org/esr/time-
programming/. Other languages provide delay as a lightweight library enhancement to the 
language. E.g., Time – Time Access and Conversions, PYTHON SOFTWARE FOUND. (Feb. 14, 2009), 
https://docs.python.org/3.0/library/time.html (describing time.sleep() function).

233. LINDA NULL & JULIA LOBUR, THE ESSENTIALS OF COMPUTER ORGANIZATION AND 

ARCHITECTURE 3 (3d ed. 2006) (discussing the “principle of equivalence of hardware and 
software”).

234. E.g., ZITTRAIN, supra note 33, at 14.
235. Ohm & Reid, supra note 32, at 1675.
236. See Paul Ohm, We Couldn’t Kill the Internet if We Tried, 130 HARV. L. REV. F. 79, 81

(2016).
237. See id.
238. ZITTRAIN, supra note 33, at 58.
239. See LEWIS, supra note 11, at 178.
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subterfuge to hide the cable that bypassed this box in a way that might 
evade detection, but this would be considerably more difficult to 
construct and considerably more likely to be detected than the equivalent 
bypass of a software-only delay system, which would be almost trivial to 
mask with very little fear of detection.

At a time when many observers have begun to focus on the rise of the 
“black box society,”240 it is an interesting spin on the metaphor to 
contemplate how a physical box might help us deal with the problems of 
black boxes. Electrical engineers and computer scientists overcome their 
doubts about black boxes by rigorously sending varying inputs and 
observing their outputs.241 We can do the same with IEX’s box. We can 
generate trade requests as inputs and time the latency before they emerge 
from the box’s output, verifying the 350-microsecond delay.

Perhaps most importantly for regulators and policymakers, the IEX 
box isolates a critical point in the path of its architecture that can facilita te 
new forms of oversight and intervention.242 There is a modularity to this 
design that policymakers can leverage. Imagine if the SEC obligated 
companies committed to rooting out the ill-effects of high-frequency 
trading to place their IEX fiber loop boxes within a machine room under 
the SEC’s control. This would afford the regulator a physical place to 
undergo black box testing and it would make it difficult for a company to 
use a jumper to short-circuit the box or to swap in a new box.

In the same way, the box delineates a boundary line, a physical place 
where regulators can conduct surveillance and impose new obligations. 
Like the border around a physical territory, the borders of this box can 
see the rise of the digital equivalent of border agents and customs rules.

Finally, for all of these reasons—persistence, external verifiabil ity, 
transparency, and regulability—the box becomes a symbol, which helps 
engender trust and goodwill. IEX can use this powerful symbol as part of 
its brand-building exercises in ways that might be less effective if tied to 
our proprietary software platform.243

C. Tunability
Desirably inefficient systems provide a tuning mechanism. In 

traditional systems for which efficiency is the goal, more is almost always 
better—a sorting algorithm that runs faster or a network with higher 

                                                                                                                     
240. PASQUALE, supra note 25, at 568.
241. TIM RILEY & ADAM GOUCHER, BEAUTIFUL TESTING 282 (2009).
242. See Kroll et al., supra note 137, at 636–37, 641 (discussing auditability of software).
243. See Victor Fleischer, Brand New Deal: The Branding Effect of Corporate Deal 

Structures, 104 M ICH. L. REV. 1581, 1600 (2006) (describing terms of corporate deals selected to 
enhance a branding message).
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bandwidth and lower latency is better.244 The primary goal of 
programmers and engineers solving problems of this type is to find and 
stamp out lingering sources of inefficiency.245

The same is almost never true for desirable inefficiency. Once 
programmers decide to inject inefficiency into a system, the key question 
becomes determining the proper amount. Often, the target is a difficult to
pinpoint and even debatable sweet spot: a Goldilocksian ideal between 
too fast and too slow. Too little inefficiency would fail to advance the 
desired values, while too much would render the system unusable.

The creators of IEX likely chose to delay stock transactions by 350 
microseconds because they calculated or discovered through trial-and-
error that shorter delays kept the door open for predatory trading while 
longer delays unnecessarily stemmed the volume of trading.246 It is 
probably arguable whether 300 microseconds or 400 microseconds 
would have served as a better tradeoff between these competing goals, 
but any delay could have been chosen by merely shortening or 
lengthening the fiber loop.247 The tunability of their chosen source of 
inefficiency granted them the freedom to find the optimal middle ground.

Consider also iPhone’s password-guessing-throttling system. Here is 
how Apple engineers have tuned this particular dial248:

Delays between passcode attempts  To further discourage brute-free passcode 
attacks, there are escalating time delays after 
the entry of an invalid passcode at the Lock 
screen. If Settings > Touch ID & Passcode 
> Erase Data is turned on, the device will 
automatically wipe after 10 consecutive 
incorrect attempts to enter the passcode. 
This setting is also available as an 
administrative policy through mobile device 
management (MDM) and Exchange 
ActiveSync, and can be set to a lower 
threshold.
On devices with an A7 or later A-series 
processor, the delays are enforced by the 
Secure Enclave. If the device is restarted 
during a timed delay, the delay is still 
enforced with the timer starting over for the 
current period.

Attempts
1-4
5
6
7-8
9 

Delay Enforced
None
1 minute
5 minutes
15 minutes
1 hour 

Table 2: iPhone’s Password-Guessing-Throttling System

                                                                                                                     
244. Supra Section I.A.
245. Id.
246. LEWIS, supra note 12, at 176.
247. Id. at 178.
248. APPLE, supra note 201, at 15.
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No upper-level seminar in algorithmic complexity or complicated 
proof can decide the exact timings in this chart. Instead, this table is 
entirely about human psychology and imperfection: when people forget 
their passwords, how many tries do they usually need to get it right? 249

How frustrating would they find it to be throttled for a particular number 
of seconds after N guesses? After N+1? The form of inefficiency that the 
designers of the iPhone chose—timing delays—grant them arbitrary 
flexibility to tune these lock-out durations in accordance with their 
chosen methodology.

At its core, tunability provides the ability to implement inefficiency 
along a spectrum, with many (perhaps infinite) gradations between the 
extremes. Nearly all of the sources of examples we have discussed thus 
far—from the exact difficulty of proof-of-work problems in Bitcoin or 
spam to length of the IEX cable—provide a faculty for fine-tuning the 
amount of efficiency they impose. 

An outgrowth of desirable inefficiency’s tunability is the way it can 
be used to shape a complex cost or penalty function. Inefficiency need 
not increase linearly; the cost of sending a second email within the same 
minute could be higher than that of sending the first. Take the smartphone 
lockout feature. The seventh or eighth guess requires a user to wait fifteen 
minutes each time.250 The ninth requires a full hour of thumb-
twiddling.251 The delay progresses, not along a straight line, but in 
increasing step sizes.

The lesson is that tunability is about far more than just setting a single, 
global level of inefficiency. It provides the opportunity to craft a function 
of increasing penalties and to customize these settings for individua l 
users. As we will find in Part IV, this flexibility is a key selling point for 
desirably inefficient regulatory interventions.

D. Decentralization
Many of these systems are structured to avoid any need for a 

centralized intermediary.252 For Bitcoin, decentralization is a design 
constraint.253 Proof of work and regimented inefficiency are a 

                                                                                                                     
249. See Bruce Schneier, The Psychology of Password Generation, SCHNEIER ON 

SECURITY (Mar. 2, 2006, 11:46 AM), https://www.schneier.com/blog/archives/2006/03/the_ 
psychology.html.

250. APPLE, supra note 201.
251. Id.
252. Matt Blaze et al., Decentralized Trust Management, 1996 PROC’S SYMP. ON SECURITY  

AND PRIVACY 164, 164 (1996).
253. In many ways, Bitcoin can be seen as a political response to the financial crisis of 2008-

2009. It is designed to eliminate any central entity and money is created at a predefined rate. The 
first Bitcoin block to be created has a headline from The Times: “Chancellor on brink of second 
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fundamental component of making this decentralization operate 
smoothly. In contrast, for Dwork and Naor’s approach to spam, this 
decentralization is a pre-existing characteristic of the way email is 
designed.254 As we mentioned previously, proof of work can be verified 
in a peer-to-peer manner between sender and recipient without involving 
a central authority, providing a way to filter out spam while respecting 
the workflow of email as it currently exists.

Time-release cryptography must ensure that information remains 
locked away for extended periods of time no matter what happens over 
the course of the intervening years or decades.255 Although this 
information could simply be given to a trustworthy authority to keep in 
escrow,256 doing so could be unpredictable given the length of the 
timescales at play. To ensure that this data remains durably protected, 
time-release cryptography therefore eschews a central authority for the 
assurances provided by the extraordinary inefficiency of cryptographic 
puzzles.

The decision to decentralize a system is often closely tied to the value 
that desirable inefficiency is designed to advance. Many argue that 
Bitcoin is decentralized out of the skepticism for banks that followed the 
2008 financial crisis.257 Email is decentralized in line with the principles 
underlying the Internet architecture.258 In either case, it is clear that 
inefficiency is a tool that can enable systems that might otherwise require 
a central authority to instead become decentralized.

IV. DESIRABLE INEFFICIENCY AS REGULATION

Almost all of our examples of desirable inefficiency so far have come 
from the private sector. Market forces have incentivized private actors to 
devise desirably inefficient solutions that solve the same basic problems 
as preexisting solutions but in addition solve related, enhanced problems 
by injecting or creating hard-to-quantify human values such as 
legitimacy, fairness, or trust.

Desirable inefficiency can serve as a tool for public-sector solutions 
as well. Regulators should consider incentivizing or mandating that 
regulated entities create desirably inefficient solutions to advance policy 
goals important to the public. Sometimes, regulators should consider 
creating their own desirably inefficient solutions, perhaps requiring 

                                                                                                                     
bailout for banks.” Genesis Block, BITCOINWIKI (Nov. 30 2017, 3:09 PM), 
https://en.bitcoin.it/wiki/Genesis_block.

254. Dwork & Naor, supra note 21, at 4.
255. Rivest et al., supra note 94, at 1.
256. Id. at 5.
257. BITCOINWIKI, supra note 253.
258. J.H. Saltzer et al., End-To-End Arguments in System Design, 2 ACM TRANSACTIONS ON 

COMPUTER SYSTEMS 277, 278 (1984).
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actors to use them or placing them into competition with preexisting 
solutions. The government should be willing to integrate desirable 
inefficiency into the design of systems that it controls.

Desirable inefficiency will sometimes solve problems that have been 
impossible to solve through regulation thus far. More often, desirably 
inefficient solutions will solve problems in a more flexible, nuanced, or 
supple fashion. The benefits of architecture, tunability, and 
filtering/separating—discussed in the prior Part—make these solutions 
differ in important ways from traditional regulatory frameworks, such as 
taxes or command-and-control edicts, as well as build on the benefits of 
newer approaches such as nudges. Regulatory desirable inefficiency 
should be added to this list of tools.

A. Case Study: A Server on Mars
To demonstrate how desirable inefficiency could work as a tool for 

regulators in practice, we propose to solve various difficult problems in 
information privacy using a novel solution based in desirable 
inefficiency—what we term “a server on Mars.” To address various 
information privacy problems, regulators might consider requiring a 
mandatory delay in the propagation of a signal through a system or across 
a network. For privacy problems, the scale of delay will likely need to be 
much longer than IEX’s 350 microseconds, perhaps on the order of 
minutes or hours. We call this “a server on Mars” as an evocative 
reference to the problem of communicating at solar system or galactic 
scale. For example, it takes at least four minutes for a radio signal to make 
the round trip from Earth to a rover on Mars and back.259

How does a four-minute mandatory way station for communicat ions 
help us address information privacy problems? And how does this differ 
from other proposals that have come before? Consider how a server on 
Mars requirement would address two notable privacy flashpoints: facial 
recognition and the right to be forgotten. Before we turn to the details of 
implementing a server on Mars, we connect the idea to what many 
scholars have said about privacy, friction, obscurity, and structura l 
protections.

                                                                                                                     
259. This is the minimum time delay that a signal could take to get between Earth and Mars. 

Depending on the relative positions of the two planets around the sun, it could take up to twenty-
four minutes. Thomas Ormston, Time Delay Between Mars and Earth, EUR. SPACE AGENCY:
M ARS EXPRESS BLOG (May 8, 2012), http://blogs.esa.int/mex/2012/08/05/time-delay-between-
mars-and-earth/.
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1.  Connection to Earlier Work
The server on Mars and other desirable-inefficiency regulat ion 

encompasses and extends a variety of concepts that have appeared under 
a number of names throughout the privacy literature. Harry Surden 
observes that few of the privacy protections we enjoy in our day-to-day 
lives flow from legal sources.260 Instead, they are latent, the product of 
structural barriers like walls, fences, and clothing.261 It is a conveniently 
privacy-preserving accident of physics, for example, that humans are 
unable to see through walls. Where other legal regimes could be 
concocted to defend this expectation of visual privacy in enclosed spaces, 
walls serve this purpose so effectively that further action seems 
gratuitous.

Unfortunately, as Surden notes, these safeguards evaporate as 
arbitrarily as they were originally established, casualties of the whim of 
technological progress.262 A fence that for centuries might have reliably 
impeded visual trespasses on private property could instantly lose 
relevance in the face of a camera-laden quadcopter. 263 Technology, as far 
as Surden’s conception of latent privacy is concerned, can change the 
laws of physics, upending the structural reality on which the bulk of 
implicit privacy protections rely.264

Our work picks up where Surden’s left off. As a regulatory response 
to technology’s impact on structural privacy, Surden proposes that 
lawmakers might choose to “overlay another regulatory device . . . in 
parallel with existing structural constraints,” a recommendation that 
directly invites our approach but provides little operational guidance. 265

We see desirable inefficiency as capable of implementing Surden’s 
suggestion. When a new technology reduces the cost of a privacy 
violation, one can mandate desirable inefficiency in its place, increasing 
the difficulty of encroaching on privacy to restore the prior conditions. 
Since inefficiency is tunable, it can be shaped to resemble, with high 
fidelity, the cost function of the structural barrier that it seeks to 
replace.266 We advance desirable inefficiency as a class of prescriptions 
to remedy the paradigm that Surden descriptively observes.267 It is 
important to note that Surden does not advance a normative framework—
he documents a pattern of technology-driven privacy erosion and 
                                                                                                                     

260. Harry Surden, Structural Rights in Privacy, 60 SMU L. REV. 1605, 1625–27 (2007).
261. Id. at 1627. 
262. Id. at 1608. 
263. Id. at 1608, 1622.
264. Id.
265. Id. at 1626.
266. Id.
267. Id.
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discusses regulation without mandating a specific level to which privacy 
should be set.268 In a similar manner, we submit desirable inefficiency as 
a technique whose flexibility renders it convenient for advancing a wide 
range of normative ends.

The server on Mars also implements important recurring themes in 
privacy law scholarship—the recognition of the value of obscurity and 
friction. 269 Whereas our predecessors focus primarily on the normative 
value of obscurity and friction,270 our work asks a subsequent, more 
concrete and actionable question: how can you bring about the same 
effects that desirable obscurity or friction achieve when they are absent 
or eliminated from a system?

Woody Hartzog and Frederic Stutzman formalize a legal notion of 
obscurity as privacy protection,271 listing four qualities that can make 
information obscure if any is absent: search visibility (whether 
information is accessible via a keyword-based search engine), 
unprotected access (whether the information is protected by passwords or 
other access-control), identification (whether identifying information 
links back to a particular individual), and clarity (whether the information 
itself is obfuscated or disassembled).272 When several of these factors are 
missing, obscurity increases in kind.273 In the language of desirable 
inefficiency, obscurity protects privacy by impeding information 
retrieval, increasing the amount of labor necessary to find, extract, and 
reassemble data.274 In this sense, obscurity is tantamount to a proof of 
work puzzle whose solution is the information itself.

Many of Hartzog and Stutzman’s examples focus on obscurity latent 
in a system.275 Hartzog and Stutzman briefly discuss injecting obscurity
into a system that doesn’t provide it as a protective remedy, but do not 
develop it into a realistic tool.276 Two of Hartzog and Stutzman’s four 
qualities of obscurity, whether information is indexed by a search engine 
or protected by a password, are easy to manipulate but provide only a 
limited range of outcomes.277 Information either is or is not password-
protected, for example, and the distance between these two contingenc ies 
                                                                                                                     

268. Id.
269. Woodrow Hartzog & Frederic Stutzman, The Case for Online Obscurity, 101 CALIF. L.

REV. 1, 3 (2013); William McGeveran, The Law of Friction, 2013 U. CHI. LEGAL F. 15, 15 (2013); 
Neil M. Richards, The Perils of Social Reading, 101 GEO. L.J. 689, 689 (2013).

270. Id.
271. Hartzog & Stutzman, supra note 269, at 1.
272. Id. at 4.
273. Id.
274. Id. at 5.
275. Id. at 40.
276. Id. at 43.
277. Id. at 42.
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is enormous.278 The two qualities of obscurity that vary along a spectrum, 
like clarity and the presence of information that might be identifying, are 
difficult to control in a systematic manner and imprecise in effect. In our 
terms, then, obscurity can implement a variety of possible privacy 
schemes by making information retrieval inefficient to varying degrees, 
but it is unwieldy as a prescriptive tool.

Desirable inefficiency in the privacy context connects once again to 
Julie Cohen’s concept of semantic discontinuity.279 Desirable 
inefficiency, like semantic discontinuity, “tend[s] to be conceptualized” 
by traditional, rationalist points of view “as imperfections that detract 
from the realization of legal, market, and technical ideals.”280 To 
implement semantic discontinuity, Cohen prescribes that “privacy law 
and policy should reinforce and widen gaps within the semantic web so 
that situated subjects can thrive.”281 That seems an apt description for 
some of the examples we have presented in this paper, perhaps most 
literally the IEX exchange, which imposes a 350-microsecond “gap” in 
the system, in pursuit of fairness.282 We think the applications of desirable 
inefficiency we present next help to “separate contexts from one 
another,” fulfilling the role for regulation that Cohen recommends.283

Finally, in this vein, Bill McGeveran and Neil Richards independently 
examine friction in the context of sharing information over social 
media.284 They each dissect the privacy implications of a recent trend 
toward frictionless sharing, in which content consumption habits on 
websites like Netflix and Spotify are automatically broadcasted to friends 
on Facebook without any action on the part of the user.285 The friction to 
which these companies and the authors refer is the notice and affirmative 
button clicks that would typically accompany this information flow.286

This friction is a specific form of inefficiency—the work necessary for a 
user to share content. In a frictionless setting, this work declines to zero, 
a phenomenon about which the authors both compile a lengthy list of 
privacy concerns.287

McGeveran proposes a solution in the form of a simple rule of thumb 
for future frictionless sharing platforms: “it should not be easier to ‘share’ 

                                                                                                                     
278. Id.
279. COHEN, supra note 4, at 239.
280. Id.
281. Id. at 248.
282. Levine, supra note 70.
283. COHEN, supra note 4, at 252.
284. McGeveran, supra note 269.
285. Id. at 62; Richards, supra note 269, at 691. 
286. McGeveran, supra note 269, at 63.
287. Id.; Richards, supra note 269, at 689.

50

Florida Law Review, Vol. 70, Iss. 4 [], Art. 2

https://scholarship.law.ufl.edu/flr/vol70/iss4/2



2018] DESIRABLE INEFFICIENCY 827

an action online than to do it.”288 That is to say, it should be at least as 
difficult to share the fact that an action was performed as to perform the 
action itself.289 McGeveran offers as an example that Netflix could 
simply add a “Play and Share” button to each video next to the existing 
“Play” button, a change that makes it exactly as difficult to watch the 
movie as to share that it was watched.290

McGeveran’s proposal arrives at a conclusion that forms the basis for 
our argument: “zero friction would be intolerable to most observers.”291

He explains this point by invoking Lawrence Lessig: privacy is 
“protected by the high cost of gathering or using” information, meaning 
that “friction is . . . privacy’s best friend.”292 McGeveran and Lessig 
embrace a middle ground between cumbersome inconvenience and the 
efficiency-fueled social media race to zero (not unlike the race to zero 
that IEX resisted).293 Some carefully measured degree of inefficiency, 
they reason, is a desirable tradeoff between convenience and privacy. 294

Friction is particularly conducive to achieving this balance because “[w]e
can choose to calibrate the amount of friction at an infinite number of 
levels, responsive to the costs and benefits in each situation.”295 This 
tunability applies to the entire category of techniques that we bundle into 
desirable inefficiency, permitting policymakers to regulate privacy with 
fine precision. Although McGeveran’s analysis focuses on one specific 
variety of inefficiency (friction in the form of additional user actions) in 
one specific domain (online sharing) he arrives at a number of broader 
insights that inform our more expansive framework.296

How exactly would a server on Mars work? What information privacy 
problems would it help mitigate? Consider two examples: facial 
recognition and the right to be forgotten.

2.  Facial Recognition
There are many concerns about the rise of technology that can be used 

to identify people based only on photos of their faces,297 only some of 
which can be addressed through a state-mandated server on Mars.
                                                                                                                     

288. McGeveran, supra note 269, at 63.
289. Id. at 42.
290. Id. at 64.
291. Id. at 53.
292. Id. at 60; see LESSIG, supra note 3, at 202.
293. McGeveran, supra note 269 at 58; see LESSIG, supra note 3, at 202.
294. McGeveran, supra note 269 at 53; see LESSIG, supra note 3, at 200–01.
295. McGeveran, supra note 269, at 53.
296. Id.
297. See generally Yana Welinder, A Face Tells More than a Thousand Posts: Developing 

Facial Recognition Privacy in Social Networks, 26 HARV. J.L. & TECH. 165 (2012) (discussing 
the “risks of face recognition technology when combined with the vast amount of personal 
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One such concern is that facial recognition might empower people 
bent on committing fraud and assault.298 People might use a smart 
phone’s camera and Internet connectivity to identify strangers in their 
close proximity.299 Armed with knowledge of the stranger’s identity, 
augmented with additional facts gleaned from an Internet search, a 
fraudster or stalker could engender false trust in their victim or use the 
Internet to identify vulnerabilities.300 Imagine a child predator using this 
technology to identify a child walking home from school, lying that the 
child’s parent is in the hospital, and referring to the child and parent by 
name.301

Desirable inefficiency expands the toolkit we can use to respond to 
this particular threat model from facial recognition. A regulator 
sufficiently worried about this threat could enact a new rule: anybody 
who provides a facial recognition capability directly to end users must 
implement a mandated minimum latency for any facial identificat ion.
They must place their server “on” Mars.

The server on Mars implicates all of the properties of desirable 
inefficiency we discussed in Part II.302 The four-minute latency is tunable. 
Four minutes might be fine if it prevents a stalker from identifying a child
passing them on the street. But it might seem insufficiently short if the 
adversarial threat model is a child being watched at play in a park (or a 
person being watched in a bar). To address different threats, we might 
mandate a server on the Sun (approximately seventeen minutes round-
trip) or maybe even a server on Neptune (eight hours).

                                                                                                                     
information aggregated in social networks”); Note, In the Face of Danger: Facial Recognition 
and the Limits of Privacy Law, 120 HARV. L. REV. 1870, 1873, 1881–82 (2007) (noting that “many 
scholars have been preoccupied with the collection of personal information in large, easily abused 
databases that threaten to create detailed portraits of individuals”).

298. In a letter from Senator Al Franken to Kevin Alan Tussy of FacialNetwork, Senator 
Franken described the concern about the NameTag app for Google Glass, which could match 
photos with social media profiles. See Conan Milner, Latest Google Glass Controversy: Face-
Recognition Search Engine App, EPOCH TIMES (Feb. 11, 2014), https://m.theepochtimes.com/ 
latest-google-glass-controversy-face-recognition-search-engine-app_500481.html; see Bridget  
A. Sarpu, Note, Google: The Endemic Threat to Privacy, 15 J. HIGH TECH. L. 97, 126–27 (2014).

299. Sarpu, supra note 298, at 126–27.
300. Senator Franken further described his concern to Kevin Alan Tussy of FacialNetwork. 

Milner, supra note 298 (“‘I am especially concerned that NameTag plans to scan dating websites 
such as Match and OKCupid. . . . It is easy to envision how this technology could facilitate 
harassment, stalking and other threats to personal security. Your company has an obligation to 
protect users from these threats.’”).

301. Kate Webb, New Facial Recognition App ‘Creepy’, Says Kids Entertainer Raffi,
TORONTO STAR, (Jan. 10, 2014), http://www.metronews.ca/news/canada/2014/01/10/new-facial-
recognition-app-creepy-says-kids-entertainer-raffi.html (citing threat of facial recognition app to 
children specifically).

302. Infra Section II.C.
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When tuned correctly, a server on Mars requirement will separate 
users of facial recognition into favored and disfavored groups. With four-
minute latency, regulators can discourage street-side stalking while not 
interfering with apps that might help people better navigate cocktail party 
conversations. With a server on Neptune you won’t be able to use facial 
recognition to trick a stranger in a bar, but you can still use it to organize 
your digital photos.303

Finally, the regulator might literally borrow IEX’s solution, 
mandating a hardware implementation of the server on Mars. Granted, it 
might be difficult to deploy the 33.9 million miles of fiber-optic cable 
that would be necessary to directly mimic IEX’s approach, but other 
materials through which light propagates more slowly or other forms of 
specially-designed hardware could satisfy this purpose.304 A hardware 
solution will ensure the same persistence, external verifiability, 
transparency, and regulability benefits discussed earlier. 

3.  The Right to Be Forgotten
The server on Mars solution could provide a nuanced approach for 

protecting what is known as the “Right to be Forgotten.”305 This right 
protects the ability of individuals to wipe the digital slate clean of truthful 
but outdated information by giving them the power to demand the 
removal of records from databases.306

The right has been given its most prominent expression in law in the 
European Union, which has recognized the right to be forgotten in case 
law and legislation. The decision by the Court of Justice of the European 
Union in Google Spain v. Costeja, recognizing the right to be forgotten 
in the Data Protection Directive, may at first glance be interpreted as a 
decision rooted in desirable inefficiency.307 By purportedly drawing a line 
between search engines, which were obligated under the decision to 
unlink “inadequate, irrelevant or no longer relevant, or excessive” search 
results from their indices, and publishers, which were not, some might 
credit the court for finding the middle ground.308 Other commentato rs 
have resisted this conclusion, noting (we think correctly) that being 
                                                                                                                     

303. Andreas Girgensohn, et al., Leveraging Face Recognition Technology to Find and 
Organize Photos, in PROCEEDINGS OF THE 6TH ACM SIGMM INT’L WORKSHOP ON M ULTIMEDIA 

INFO. RETRIEVAL 99, 99–101 (2004).
304. Nola Taylor Redd, How Long Does it Take to Get to Mars?, SPACE.COM (Nov. 14, 2017, 

10:22 AM), http://www.space.com/24701-how-long-does-it-take-to-get-to-mars.html.
305. JONES, supra note 34 (discussing the right to be forgotten).
306. Id.
307. Case C-131/12, Google Spain SL v. Agencia Española de Protección de Datos, 2014 

E.C.R. 317, http://curia.europa.eu/juris/document/document.jsf?text=&docid=152065&doclang 
=EN.

308. Id. at ¶ 93.
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removed from the search engines is to be effectively severed from public 
accessibility.309

Imagine if, in the alternative, the European Court of Justice imposed 
a server on Mars requirement. Google could be obligated to withhold the 
offending search query results not entirely but only for a prespecified 
delay.310 The Court would probably leave the implementation details to 
Google, which could, for example, take advantage of the dynamism of 
browsers that speak Javascript and HTML5 to implement the delay in 
code.311 The browser would display the first page of search query hits 
without the “forgotten” link for a specified length of time—say four 
minutes—after which it would appear. The idea is that offending hits 
would not appear for most users, but for the dedicated researcher, it would 
appear with patience.

We are not taking a stand on whether the Costeja decision represents 
a triumph for privacy, unwise censorship, or something in between. Our 
point instead is to imagine ways in which desirable inefficiency and proof 
of work might have provided the court with different, perhaps more 
palatable middle grounds.

B. Compared to Other Regulatory Approaches
Desirable inefficiency will provide benefits and capabilities that other 

regulatory approaches lack. It threads a needle between traditiona l 
command-and-control measures and newer proposals for nudges. Better 
than command-and-control approaches, desirably inefficient regulat ion
(such as a mandated server on Mars) acts more like a “policy dial” than a 
“policy lever,” expanding the regulatory art-of-the-possible from a binary 
off/on choice to a range of possibilities.312 At the same time, desirably 
inefficient solutions can be far more specific and prescriptive than most 
nudges, which have been described as “libertarian paternalism” by 
Sunstein and Thaler.313 When a nudge is too libertarian to address a 
problem, desirable inefficiency can often do more and go further.

                                                                                                                     
309. Jonathan Zittrain, Don’t Force Google to ‘Forget,’ N.Y. TIMES (May 14, 2014), 

https://www.nytimes.com/2014/05/15/opinion/dont-force-google-to-forget.html.
310. This is similar to a proposal by Evan Selinger and Woody Hartzog for a middle ground 

result rooted in obscurity, one that would have pushed the objectionable material off of Google’s  
first page of results. See Evan Selinger & Woodrow Hartzog, Google Can’t Forget You, but it 
Should Make You Hard to Find, WIRED (May 20, 2014, 3:33 PM), 
http://www.wired.com/2014/05/google-cant-forget-you-but-it-should-make-you-hard-to-find/.

311. For an online tutorial on how to accomplish a delayed reveal, see CSS3 Transitions 
Using Visibility and Delay, GREYWYVERN.COM (Apr. 21, 2011), http://www.greywyvern.com/ 
?post=337.

312. See Dan L. Burk & Mark A. Lemley, Policy Levers in Patent Law, 89 VA. L. REV. 1575,
1612 (2003).

313. Cass R. Sunstein & Richard H. Thaler, Libertarian Paternalism is Not an Oxymoron,
70 U. CHI. L. REV. 1159, 1160–62 (2003).
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Desirable inefficiency will often be the best choice for a regulator 
faced with a difficult problem, particularly one involving information 
flow. That said, it is not a panacea, and there will be many situations in 
which a command-and-control approach or a nudge continues to be the 
best solution.

Finally, we note both similarities and important differences between 
desirably inefficient regulation and the imposition of a tax. Taxes exhibit 
many of the benefits of desirable inefficiency, most notably the ability to 
filter and separate based on different behaviors. But unlike a mere tax, 
desirable inefficiency can impact quantities beyond just money (e.g., time 
or energy) and lends itself to decentralized and architectural solutions, 
which we argue will provide implementation benefits over a tax in many 
situations.

1.  Command-and-Control
A familiar metaphor in policy circles is that of a policy “lever.”314 This 

evokes a switch, an on/off, binary condition. A policy lever can be 
“flipped” or left alone. Because desirable inefficiency is inherently a 
tunable feature, policymakers will find that it allows new choices 
between “on” and “off”—between “permitted” and “forbidden.” For this 
reason, we propose selecting a new metaphor to capture the implicat ions 
of desirable inefficiency: a policy dial. Policy dials are intrinsica lly 
tunable mechanisms. Deciding to deploy a policy dial is but a first step; 
policymakers need also to decide where to set or tune the dial to effectuate 
a particular goal. This tuning process doesn’t always entail setting some 
magic global threshold. A dial need not be calibrated to the same position 
in every instance; instead, one can alter its setting depending on the 
circumstances of individual cases, weighing various factors to calculate 
an overall remedy.

For these reasons, policy dials often present appealing “midd le 
ground” or “third way” possibilities between unappealing or nonviab le 
polar choices.315 Rather than choosing between an unending deluge of 
spam and an overprotective ban on unsolicited emails, for example, an 
appropriate proof of work solution could set a dial somewhere between 
these two extremes.

2.  Nudges
Like nudges, mandated desirable inefficiency is less direct than classic 

command-and-control regulation.316 These three options sit along a 

                                                                                                                     
314. Burk & Lemley, supra note 312, at 1630.
315. THALER & SUNSTEIN, supra note 36, at 252.
316. Id. at 253. 
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continuum, so it is important not to overstate the distance between them. 
Nudges, like mandated desirable inefficiency, also tend to separate those 
being regulated based on the strength of their preferences.317 For 
example, switching from an opt-in to an opt-out for retirement benefits 
changes rates of participation because default choices tend to be sticky.318

Nevertheless, those with a strong preference not to participate will still 
have the freedom to opt out, suggesting that the nudge will separate based 
on this preference. In other words, the impact of a nudge is most heavily 
felt by those who do not have strong preferences.319

On this continuum, mandated desirable inefficiency usually sits much 
closer to command-and-control than to nudges. The most prominent 
proponents of nudges have aptly described them as methods of libertar ian 
paternalism.320 Although some critics have debated whether nudges tend 
to be more paternalist than the proponents have suggested, it is hard to 
deny that placing healthy food at eye level is far less paternalist or 
interventionist than stalling digital communications for four minutes or 
longer.321 As we have noted previously, desirable inefficiency often 
appears in adversarial settings where participants have significant 
incentive to overcome inefficiency if possible. This target audience of 
highly-motivated high-frequency traders, Bitcoin miners, or spammers is 
a far cry from the easily-confused but well-meaning “humans” that 
Sunstein and Thaler address.

Nudges are therefore able to influence behavior gently. They are 
intended to be seamless, shaping behaviors without creating disruption or 
adding friction.322 Desirable inefficiency, in contrast, must respond to its 
adversaries heavy-handedly, embracing cost as a mechanism for altering 
outcomes.

Finally, nudges tend to arise in situations that can easily be reduced to 
a quantifiable performance metric, such as amount saved, calories 
consumed, or plastic grocery bags used (a proxy for sea animals 
endangered). Desirable inefficiency may be much more suitable for 
advancing human values that are difficult to reduce to a measurement, 
such as fairness or trust, values we might otherwise implement through 
traditional command-and-control. 

                                                                                                                     
317. Id. at 247. 
318. Brigitte C. Madrian & Dennis F. Shea, The Power of Suggestion: Inertia in 401(k) 

Participation and Savings Behavior, 116 Q.J. ECON. 1149, 1151–52 (2001). 
319. THALER & SUNSTEIN, supra note 36.
320. Cf. Sunstein & Thaler, supra note 313, at 5 (using the term “libertarian paternalism” to 

describe a policy that preserves freedom of choice but steers people toward a desired behavior).
321. THALER & SUNSTEIN, supra note 36.
322. Id. at 5–6.
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3.  Taxes
At first glance, many of our examples of desirable inefficiency might 

seem indistinguishable from taxes. Dwork and Naor’s proposal for spam 
is a tax on email exacted in computational effort.323 Captchas assess a tax 
via mental exertion in the form of pattern matching, a currency that (for 
now) happens to be disproportionately plentiful for humans and scarce 
for machines.324 The smartphone lockout mechanism is a tax on time that 
penalizes anyone who needs to make a large number of attempts—such 
as an intruder who is guessing the password brute-force—while imposing 
minimal inconvenience on a user who is simply clumsy.325

In many instances, desirable inefficiency filters “good” users from 
“bad” in largely the same manner as a tax.326 Although some taxes exist 
simply to create government revenue streams, taxes can also serve to alter 
prices in ways that change incentives and, ultimately, behaviors.327 For 
example, a nation might decide to assess a gasoline tax to encourage 
people to use more fuel-efficient alternatives by making them more cost-
competitive.

We can see a similar effect in several of our examples of desirable 
inefficiency. At the moment, the price of sending an email is negligib le, 
requiring so little computation time that a concerted spammer can send a 
massive number of messages each day. Dwork and Naor propose raising 
the price of each email dramatically by increasing the amount of 
computation necessary to send a message.328 Although the average user 
would still be willing to make this small but appreciable outlay to send a 
few dozen emails each day, the price hike would increase the cost of a 
single spam message well beyond the profit that a spammer will make 
from sending it.

Taxes provide one key benefit that desirable inefficiency lacks—they 
allow the government to recapture the costs of tax-driven behaviora l 
changes in the form of tax revenue.329 Every penny paid in gasoline tax, 
although a financial burden for a consumer, can at least be redirected 
somewhere else in the economy to soften or reshape the impact of the tax. 
Doing so ensures that the increased costs of price changes do not entirely 
go to waste. In contrast, waste is a hallmark of desirable inefficiency. The 
computational work of sending an email or validating Bitcoin 
                                                                                                                     

323. Dwork & Naor, supra note 21.
324. Yale, supra note 196.
325. APPLE, supra note 201, at 15.
326. Brian Galle, Tax, Command . . . or Nudge?: Evaluating the New Regulation, 92 TEX. L.

REV. 837, 844 (2014).
327. Id. at 839.
328. Dwork & Naor, supra note 21.
329. Galle, supra note 326, at 851.
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transactions is lost as waste heat. Likewise, captchas waste 150,000 hours 
of productivity every day.330

Not only is this waste entirely justifiable, but, in many circumstances, 
it is actually preferable. Suppose that Dwork and Naor had replaced proof 
of work with a financial tax instead. Every email sent would incur a fee, 
the Internet equivalent of postage.331 This system would achieve the same 
spam-prevention goals as Dwork and Naor’s proposal, but would 
substitute waste heat for tax revenue, seemingly an upgrade.

However, implementing this solution would make it necessary to 
entirely rethink the way email functions. Unlike paper mail, email is 
fundamentally decentralized.332 Paper mail is processed and delivered by 
a single entity, the United States Postal Service, which makes it easy to 
collect stamp revenue and reject letters that lack enough postage. In 
contrast, email messages travel from the sender’s computer to the
recipient’s without passing through any central intermediary. To enact an 
email tax, every email account would have to have an associated payment 
method. To ensure that the tax was paid, all email messages would have 
to pass through a central third party. In effect, we would have to redesign 
email to build out the infrastructure for an email tax—it would no longer 
be email as we know it today. It would arguably lack the dynamism, fault-
tolerance, and generativity of decentralization that has enabled its 
success.

In general, tax-like forms of desirable inefficiency make a tradeoff: in 
order to remain decentralized, they forgo the opportunity to collect tax 
revenue. Tax collection requires a centralized system of detection, 
collection, and enforcement. When it comes to the goal of preventing 
spam, however, collecting a tax is far less important than making sure it 
was paid. Proof of work comes with a built- in, decentralized mechanism 
for doing so—a recipient can easily check whether a sender completed a 
proof of work problem, thereby ensuring the tax was paid.333 In this light, 
Dwork and Naor’s approach is what we might call a wasteful tax—a tax 
that must be paid but not collected. This sort of tax maintains its potency 
as a pricing instrument but sacrifices revenue in order to preserve 
decentralization.334

                                                                                                                     
330. David Pogue, Time to Kill Off Captchas, SCI. AM. (Mar. 1, 2012), 

http://www.scientificamerican.com/article/time-to-kill-off-captchas/.
331. A decade ago, entrepreneurs were proposing precisely this type of system. See Saul 

Hansell, Postage is Due for Companies Sending E-mail, N.Y. TIMES (Feb. 5, 2006), 
http://www.nytimes.com/2006/02/05/technology/postage-is-due-for-companies-sending-email.
html (describing service called Goodmail).  

332. NARAYANAN ET AL., supra note 102, at 6.
333. NAKAMOTO, supra note 20.
334. It is worth noting that there are still limited ways of recapturing some of desirable 

inefficiency’s waste. Computational work, for example, could be repurposed for good causes. The 
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4.  The Political Economy of Desirable Inefficiency
Regulators may prefer mandated desirable inefficiency over 

traditional approaches because of the political economy of the regulat ion 
of code. Because desirable inefficiency approaches will often reveal 
alternatives beyond a permit-or-ban binary, they can be used to strike 
meaningful compromises.

The intrinsic tunability of desirable inefficiency allows the regulator 
to wield it as a form of responsive regulation, a regulatory approach that 
advocates starting with softer, less punitive approaches to regulat ion, 
turning to more onerous approaches only when these fail.335 An 
information privacy law or rule mandating a server on Mars, for example, 
could set an initial value for the mandated delay while building in a 
mechanism for assessing whether the delay continues to make sense 
every six months, say. Especially as technology continues to evolve, 
regulators may realize that the delay should be increased or decreased to 
take into account new threat models.

5.  Regulating Drones
Consider one final example, which highlights the potential for 

desirable inefficiency to serve as a tool for regulators. The rise of 
inexpensive, capable drones sold directly to consumers has raised 
concerns about privacy and airspace safety.336 In the United States, both 
the FAA and state regulators have begun to tentatively propose and 
promulgate rules limiting, for example, where drones are permitted to 
fly.337

These regulators might turn to desirable inefficiency to address 
concerns about drones, leveraging the beneficial design patterns 
described in Part II and the advantages they afford over traditiona l 
approaches to regulation.
                                                                                                                     
Folding@Home project seeks to use spare computational cycles on personal computers to solve 
protein folding problems that could help cure diseases like Alzheimer’s or Parkinson’s. This 
collective computational power is able to match that of a large supercomputer. One could imagine 
developing proof-of-work problems that contribute to causes like Folding@Home, mitigating 
some of the costs of existing approaches that merely waste electricity. FOLDING@HOME,
http://folding.stanford.edu (last visited Aug. 22, 2016). Similarly, Google’s reCaptcha effort 
exploits humans reading garbled text to interpret the difficult-to-decipher words in scanned books. 
reCAPTCHA: Tough on Bots Easy on Humans, GOOGLE, https://www.google.com/recaptcha/ 
intro/android.html (last visited Apr. 14, 2018). Even so, repurposed work is a far less flexible 
currency than money or electricity.

335. See generally IAN AYRES & JOHN BRAITHWAITE, RESPONSIVE REGULATION:
TRANSCENDING THE DEREGULATION DEBATE 4–5 (1992) (describing the responsive regulation 
approach).

336. Troy A. Rule, Drone Zoning, 95 N.C. L. REV. 133, 135–36 (2016).
337. Id. at 142–44.
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Currently, the FAA has designated sensitive airspaces as no-fly 
zones.338 You cannot fly a drone over the White House, in Yosemite (or 
any national park), or within five miles of an airport.339 Nor can you fly 
a drone at an altitude of greater than 400 feet.340 This is a binary, policy-
lever approach to the problem.

In contrast, desirable inefficiency could offer a more nuanced 
balancing of costs and benefits. Assume the primary concern in a given 
city is the nuisance of a sky abuzz with dozens of noisy devices. With this 
goal in mind, rather than prohibiting drone flight entirely, one could 
require drones to drain their batteries at higher than their ordinary rate 
when flying within the city limits or over particular classes of property 
(residential, commercial, schools, etc.).341 For example, these rules could 
be structured to channel (but not compel) package delivery drones to 
travel long distances over low-drain streets rather than high-drain private 
property.342 The higher the rate of mandated battery drain, the fewer 
number of drones would be aflight in that airspace at any given time. This 
creates a tunable dial that policymakers can set to encourage drone 
owners to limit flight in some areas. 

This approach acknowledges and permits the positive uses of drones 
while altering incentive structures to balance these benefits with 
undesirable side-effects.343 It operates somewhat like a tax, altering the 
incentive structure, limiting flight over sensitive areas to drone operators 
with the most strongly expressed preferences, namely those willing to 
accept the performance hit. 

To draw on the relative strengths of desirable inefficiency, imagine 
regulators model their battery drain rules on proof of work. Rather than 
issuing an open-ended edict instructing operators to consume energy in 
any manner they choose, regulators could require a proof-of-work-style 
method for mandated battery drain.

                                                                                                                     
338. 14 C.F.R. § 107.51(b) (2016); see generally Unmanned Aircraft Systems, FED.

AVIATION ADMIN. (Mar. 12, 2018, 12:00:29 PM), https://www.faa.gov/uas/ (giving an overview 
of information for people looking to fly drones in the United States). 

339. See Airspace Restrictions, FED. AVIATION ADMIN. (Oct. 4, 2017, 1:18:01 PM), 
https://www.faa.gov/uas/where_to_fly/airspace_restrictions/; Unmanned Aircraft in the National 
Parks, NAT’L PARK SERV., https://www.nps.gov/articles/unmanned-aircraft-in-the-national-
parks.htm (last visited Mar. 16, 2018).

340. 14 C.F.R. § 107.51(b).
341. Troy Rule proposes a “drone zoning” approach to addressing the diversity of concerns 

about drones by channeling different permissible uses into the various parts of a city. Rule, supra 
note 336, at 184–200. This proposal would be a natural fit for implementation through a desirable 
inefficiency mandate.

342. See id.
343. Id. at 186–87 (advocating for a utilitarian costs-benefits approach to channeling various 

drone uses).
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For example, regulators could literally require drones to solve pre-
specified, difficult math puzzles while flying over restricted spaces, the 
way Bitcoin does.344 They could select puzzles known to require heavy 
computation, and concomitantly high energy usage, resulting in 
predictable, accelerated reductions of battery life.345

Drone proof of work might have an enforcement benefit as well. 
Currently, the FAA uses a registration system for drones.346 Even 
hobbyists with inexpensive drones must submit personal information on 
a government website including the serial number of their drone.347 Many 
owners cannot be bothered to take these steps, meaning the rate of 
compliance is quite low.348

If drones are required not only to solve but to broadcast the solution 
to proof of work problems, law enforcement officials could monitor those 
broadcasts to verify compliance. The police officer with the scanner on 
the ground would not know who owned an unregistered drone overhead, 
but she would at least have mathematically verifiable proof that the 
operator was following the restricted zone rule.

This proof of work solution faces a problem not faced by Bitcoin or 
spam: processor offloading. The drone operator might solve the puzzles 
on a computer outside the device—say a laptop on the ground or a 
computer in the cloud—and transmit the answer wirelessly to the drone. 
Bitcoin and spam assume that users will solve proof of work using the 
most powerful computer they can spare.349 Drone proof of work depends 
on the use of the drone’s CPU itself, in order to effect battery drain.

One solution might be to effect battery drain not by computation, but 
by ordeal. For example, regulators might require drones to fly a pattern 
known to require greater work from rotors and motors, perhaps a 
sinusoidal pattern through the air. Or regulators might require the 
installation of baffles on the body of the drone in configurations known 

                                                                                                                     
344. NAKAMOTO, supra note 20, at 3.
345. Researchers have calculated the energy consumption consequences of Bitcoin mining. 

KARL J. O’DWYER & DAVID M ALONE, NAT’L UNIV. OF IR. M AYNOOTH HAMILTON INST., BITCOIN  

M INING AND ITS ENERGY FOOTPRINT 1–3 (2014), http://karlodwyer.com/publications/pdf/ 
bitcoin_KJOD_2014.pdf.

346. FAADroneZone, FED. AVIATION ADMIN., https://faadronezone.faa.gov/#/ (last visited 
Mar. 16, 2018).

347. Id.
348. John Goglia, Over 450,000 Hobby Flyers Have Registered. So Why Does Fighting 

FAA’s Drone Registry Still Matter?, FORBES (June 15, 2016, 7:31 PM), 
https://www.forbes.com/sites/johngoglia/2016/06/15/over-450000-hobby-flyers-have-registered 
-so-why-does-fighting-faas-drone-registry-still-matter/.

349. Eric Limer, The World’s Most Powerful Computer Network is Being Wasted on Bitcoin ,
GIZMODO (May 13, 2013, 10:33 AM), http://gizmodo.com/the-worlds-most-powerful-computer-
network-is-being-was-504503726.
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to change the aerodynamics of the device, like flaps on an airplane’s 
wings. Finally, they might require drones to emit high-powered radio 
signals at a battery-draining wattage that can be measured. Any of these 
three methods would be observable and very difficult to fake to the 
observer on the ground. 

Regardless of the precise mechanism, a proof of work for drones 
would have advantages over any other approach. Unlike a no-flight zone, 
proof of work makes flight through a particular airspace possible but 
unlikely.350 Like a tax, the burden of the proof of work can be tuned to 
balance the competing interests. It allows for some on-the-ground 
enforcement and verification, without being as burdensome or arguably 
invasive as a central registry.

It might seem odd to imagine drones careening across the sky 
following some government-mandated, intentionally inefficient flight 
pattern. This, of course, is the common response to proof of work, 
perhaps no more bizarre than thirty-eight miles of fiber-optic cable or 
computers solving math puzzles to no direct end.

CONCLUSION

Computer scientists and engineers turn away from efficient solutions 
when faced with the need to inject complex human values into systems. 
Desirable inefficiency is an important and emerging area of computation 
that deserves further investigation and development. Not only should 
computer experts focus on desirable inefficiency, but regulators, 
policymakers, and legal scholars should also take up this promising new 
tool. We need to develop strategies for ensuring the peaceful coexistence 
of human life and technological progress. Desirable inefficiency can 
serve as a critical part of such efforts.

The story we have just told, which begins with a peculiar and 
unappreciated trend in computer science and ends with an entirely new 
(and, at times, bizarre) approach to regulating digital systems, is not 
unique. Although this Article grapples with the minutiae that certify 
particular techniques as “desirably inefficient” to regulators, it should be 
seen as just one source of inspiration among many. The moral of this 
Article is that technical design decisions can shape the values that digita l 
systems advance in predictable ways. The emergence of desirable 
inefficiency highlights what computer scientists have known at some 
level for years, if not decades.  As regulating design becomes ever more 
popular, regulators can look to desirable inefficiency—and the other 
unwritten and yet-to-be-written rules of design—for inspiration and 
opportunity.

                                                                                                                     
350. Rule, supra note 336, at 184–200.

62

Florida Law Review, Vol. 70, Iss. 4 [], Art. 2

https://scholarship.law.ufl.edu/flr/vol70/iss4/2


	Florida Law Review
	Desirable Inefficiency
	Paul Ohm
	Jonathan Frankle
	Recommended Citation


	322297 FL Law Rev 70-4 Text r1.pdf

